Mise en service

Capteur de pression différentielle DPT-10
Membrane de mesure métallique
4 … 20 mA/HART
Table des matières

1. **À propos de ce document**
 1.1 Fonctions ... 4
 1.2 Personnes concernées ... 4
 1.3 Symbolique utilisée .. 4

2. **Pour votre sécurité**
 2.1 Personnel autorisé ... 5
 2.2 Utilisation appropriée ... 5
 2.3 Avertissement contre les utilisations incorrectes 5
 2.4 Consignes de sécurité générales 5
 2.5 Caractéristiques de sécurité sur l’appareil 6
 2.6 Conformité CE ... 6
 2.7 Recommandations NAMUR satisfaites 6
 2.8 Consignes de sécurité pour applications à oxygène 6

3. **Description du produit**
 3.1 Structure ... 7
 3.2 Procédé de fonctionnement 8
 3.3 Réglage et configuration .. 11
 3.4 Emballage, transport et stockage 11

4. **Monter**
 4.1 Remarques fondamentales concernant l’utilisation de l’appareil 13
 4.2 Informations concernant les applications à oxygène 14
 4.3 Indications de montage et de raccordement 14
 4.4 Disposition de mesure débit 18
 4.5 Disposition de mesure niveau 21
 4.6 Disposition de mesure densité et interface 26
 4.7 Disposition de mesure pression différentielle 28
 4.8 Montage boîtier externe ... 30
 4.9 Contrôle de l’installation ... 31

5. **Raccordement à l’alimentation en tension**
 5.1 Préparation du raccordement 32
 5.2 Étapes de raccordement .. 33
 5.3 Boîtier à chambre unique 34
 5.4 Boîtier à deux chambres .. 35
 5.5 Boîtier à deux chambres Ex d 38
 5.6 Version IP 66/IP 68, 1 bar 39
 5.7 Phase de mise en marche 40

6. **Configuration avec le module de réglage et d’affichage**
 6.1 Description succincte ... 41
 6.2 Insérer le module de réglage et d’affichage 41
 6.3 Système de réglage ... 43
 6.4 Régler des paramètres ... 43
 6.5 Plan du menu ... 53
 6.12 Sauvegarde des données de paramétrage 57

7. **Mettre en service avec le programme de configuration AMS™**
 7.1 Paramétrage avec AMS™ ... 58
Table des matières

8 Mettre en service
 8.1 Sélectionner le mode de fonctionnement ... 59
 8.2 Mesure de débit .. 59
 8.3 Mesure de niveau ... 61
 8.4 Mesure de densité et d'interface .. 65
 8.5 Mesure de pression différentielle .. 65

9 Maintenance et élimination des défauts
 9.1 Entretien .. 68
 9.2 Éliminer les défauts .. 68
 9.3 Réparation de l'appareil .. 69

10 Démonter
 10.1 Étapes de démontage .. 70
 10.2 Recycler .. 70

11 Annexe
 11.1 Caractéristiques techniques ... 71
 11.2 Dimensions ... 82

Consignes de sécurité pour atmosphères Ex
Respectez les consignes de sécurité spécifiques pour les applications Ex. Celles-ci font partie intégrale du manuel de mise en service et sont jointes avec agrément Ex à la livraison de chaque appareil Ex.
Date de rédaction : 2013-07-11
1 À propos de ce document

1.1 Fonctions
La présente notice technique contient les informations nécessaires vous permettant un montage, un raccordement et une mise en service de l'appareil ainsi que des remarques importantes concernant l'entretien et l'élimination des défauts. Il est donc important de la lire avant d'effectuer la mise en service et de la conserver près de l'appareil, accessible à tout moment comme partie intégrante du produit.

1.2 Personnes concernées
Cette notice technique s'adresse à un personnel spécialisé et qualifié. Ces spécialistes doivent avoir connaissance de son contenu et le mettre en pratique.

1.3 Symbolique utilisée

Informations, conseil, remarques
Sous ce symbole, vous trouverez des informations complémentaires très utiles.

Prudence : Le non-respect de cette recommandation peut entraîner des pannes ou des défauts de fonctionnement.

Avertissement : Le non-respect de cette instruction peut porter préjudice à la personne manipulant l'appareil et/ou peut entraîner de graves dommages à l'appareil.

Danger : Le non-respect de cet avertissement peut entraîner des blessures sérieuses à la personne manipulant l'appareil et/ou peut détruire l'appareil.

Applications Ex
Vous trouverez à la suite de ce symbole des remarques particulières concernant les applications Ex.

• Liste
Ce point précède une énumération dont l'ordre chronologique n'est pas obligatoire.

→ Étape de la procédure
Cette flèche indique une étape de la procédure.

1 Séquence d'actions
Les étapes de la procédure sont numérotées dans leur ordre chronologique.

Élimination des piles
Vous trouverez à la suite de ce symbole des remarques particulières concernant l'élimination des piles et accumulateurs.
2 Pour votre sécurité

2.1 Personnel autorisé
Montez et mettez l'appareil de mesure de la pression en marche que si vous connaissez les réglementations spécifiques au pays concerné et que vous avez la qualification correspondante. vous devez connaître les règlements concernant des atmosphères explosives, des opérations de mesure et de régulation ainsi que des circuits électriques car l'appareil de mesure de pression est un "matériel électrique" selon EN 50178. Selon les conditions d'utilisation, vous devez disposer de connaissances correspondantes, par ex. sur des produits agressifs ou de hautes pressions.

2.2 Utilisation appropriée
Le DPT-10 est un capteur de pression différentielle destiné à la mesure de débits, de niveaux, de pressions différentielles, de densités et d'interfaces.
Vous trouverez des informations plus détaillées concernant le domaine d'application au chapitre "Description du produit".
La sécurité de fonctionnement n'est assurée qu'à condition d'un usage conforme de l'appareil en respectant les indications stipulées dans le manuel de mise en service et dans les éventuelles notices complémentaires.
Pour des raisons de sécurité et de garantie, toute intervention sur l'appareil en dehors des manipulations indiquées dans le manuel de mise en service est strictement réservée à des personnes autorisées par le fabricant de l'appareil. Il est explicitement interdit de procéder de son propre chef à des transformations ou modifications sur l'appareil.

2.3 Avertissement contre les utilisations incorrectes
Un usage non conforme ou non approprié de l'appareil peut engendrer des risques spécifiques à l'application. Un montage incorrect ou un réglage erroné peut entraîner par exemple un débordement de cuve ou des dégâts dans les composants de l'installation.

2.4 Consignes de sécurité générales
L'appareil correspond au standard technologique actuel et respecte les réglementations et directives usuelles. L'utilisateur doit suivre scrupuleusement les consignes de sécurité de cette notice, les standards d'installation spécifiques au pays concerné ainsi que les dispositions de sécurité et règles de préventions d'accidents en vigueur.
L'appareil ne doit fonctionner que dans un état technique impeccable et sûr. L'exploitant est responsable d'un fonctionnement sans perturbation de l'appareil.
Pendant toute la durée d'exploitation de l'appareil, l'exploitant doit en plus vérifier que les mesures nécessaires de sécurité du travail
Pour votre sécurité

concordent avec les normes actuelles en vigueur et que les nouvelles réglementations y sont incluses et respectées.

2.5 Caractéristiques de sécurité sur l'appareil
Les caractéristiques et remarques de sécurité se trouvant sur l'appareil sont à respecter.

2.6 Conformité CE
L'appareil satisfait aux exigences légales des directives respectives de la CE. Avec le marquage CE, nous confirmons que le contrôle a été effectué avec succès.

2.7 Recommandations NAMUR satisfaites
L'appareil satisfait aux exigences des recommandations NAMUR correspondantes.

2.8 Consignes de sécurité pour applications à oxygène
En ce qui concerne les appareils destinés aux applications à oxygène, il faudra respecter les consignes particulières indiquées dans les chapitres "Transport et stockage", "Montage" ainsi qu'aux "Caractéristiques techniques" sous "Conditions process". Les réglementations valables et spécifiques au pays concerné seront également à respecter (par ex., en Allemagne les réglementations, les instructions de réalisation et les fiches techniques des associations professionnelles).
3 Description du produit

3.1 Structure

La livraison comprend :

- Capteur de pression différentielle DPT-10
- Selon la version, vis de purge et/ou vis de fermeture (pour plus de
détails, voir le chapitre "Dimensions")
- Accessoires optionnels
- Documentation
 - Ce manuel de mise en service
 - Certification de contrôle pour capteur de pression
 - Manuel de mise en service "Module de réglage et d'affichage"
 (en option)
 - Les "Consignes de sécurité" spécifiques Ex (pour les versions
 Ex)
 - Le cas échéant d'autres certificats

La figure suivante représente les composants du DPT-10 :

![Diagramme du DPT-10 en version de base](image)

Fig. 1: DPT-10 en version de base

1. Couvercle de boîtier (en option) avec module de réglage et d'affichage
 intégré
2. Boîtier avec électronique
3. Composant de raccordement avec cellule de mesure

Les composants sont disponibles en différentes versions.

La plaque signalétique contient les informations les plus importantes
servant à l'identification et à l'utilisation de l'appareil :
3 Description du produit

Fig. 2: Présentation de la plaque signalétique (exemple)
1 Type d'appareil
2 Espace réservé aux agréments
3 Plage de mesure
4 Sortie signal/tension d'alimentation
5 Pression process - température process
6 Matériau d'étanchéité
7 Code de produit
8 Numéro de commande
9 Numéro de série de l'appareil
10 Numéros ID documentation de l'appareil

3.2 Procédé de fonctionnement

Domaine d'application
Le DPT-10 est un capteur de pression différentielle destiné à la mesure de débit, de niveau, de pression différentielle, de densité et d'interface. Les produits à mesurer sont des gaz, des vapeurs et des liquides.

Mesure de débit

Fig. 3: Mesure de débit avec DPT-10 et organe déprimogène, \(Q = \text{débit}, \Delta p = \text{pression différentielle}, \Delta p = p_1 - p_2 \)
1 Diaphragme
2 Tube de Pitot
3 Description du produit

Mesure de niveau

Fig. 4: Mesure de niveau avec DPT-10. $\Delta p =$ pression différentielle, $p =$ densité du produit, $g =$ accélération de la pesanteur

1 Version de base avec prises de pression
2 Version avec séparateur à bride
3 Version avec capillaires et séparateurs galettes

Mesure de pression différentielle

Fig. 5: Mesure de pression différentielle avec DPT-10

1 Filtre
2 DPT-10

Mesure de densité

Fig. 6: Mesure de densité avec DPT-10, $h =$ espace de montage défini, $\Delta p =$ pression différentielle, $p =$ densité du produit, $g =$ accélération de la pesanteur

1 DPT-10
3 Description du produit

Mesure d'interface

Fig. 7: Mesure d'interface avec DPT-10
1 DPT-10
2 Liquide à plus haute densité
3 Liquide à plus faible densité

Principe de fonctionnement

Une cellule de mesure métallique est utilisée comme élément de mesure. Les pressions process sont transmises par des membranes séparatrices et de l'huile de remplissage à un pont à résistances (technologie des semi-conducteurs).

La différence des pressions existantes crée une modification de la tension du pont. Celle-ci est mesurée, exploitée puis convertie en un signal de sortie adéquat.

C'est pour cela que pour le raccordement au process, la caractérisation " + " et " - " sur le composant de raccordement au process dans le chapitre " Consignes de montage et de raccordement " doit être respectée. Dans le calcul de la différence de pression, la pression effective sur " + " est considérée comme positive et la pression effective sur " - " comme négative.

La structure des cellules de mesure dépend de la plage de mesure :

Fig. 8: Cellule de mesure métallique 10 mbar et 30 mbar - p_1 et p_2 pressions process
1 Élément de mesure
2 Membrane en silicium
3 Membrane séparatrice
4 Huile de remplissage
5 Protection contre les surcharges intégrée
3 Description du produit

Tension d'alimentation
Électronique bifilaire 4 … 20 mA/HART pour tension d'alimentation et transmission de la valeur de mesure sur la même ligne.

La plage de tension d'alimentation peut différer en fonction de la version de l'appareil.

Vous trouverez les données concernant l'alimentation de tension au chapitre "Caractéristiques techniques ".

Le rétroéclairage optionnel du module de réglage et d'affichage est alimenté par le capteur. Toutefois, il faut pour cela que la tension de service soit suffisante et atteigne une certaine valeur. Vous trouverez les indications précises concernant la tension au chapitre "Caractéristiques techniques ".

3.3 Réglage et configuration
L'appareil offre les possibilités de réglage suivantes :

- Avec le module d'affichage et de réglage
- Avec le DTM WIKA approprié en liaison avec le logiciel de configuration selon le standard FDT/DTM, par exemple PACTware et PC
- Avec les programmes de configuration AMS™ ou PDM spécifiques aux fabricants
- Avec une console de programmation HART

Les paramètres saisis seront mémorisés dans le capteur DPT-10 et en option également dans le module de réglage et d'affichage ou dans PACTware.

3.4 Emballage, transport et stockage
Durant le transport jusqu'à son lieu d'application, votre appareil a été protégé par un emballage dont la résistance aux contraintes de transport usuelles a fait l'objet d'un test selon la norme DIN ISO 4180.

Pour les appareils standard, cet emballage est en carton non polluant et recyclable. Pour les versions spéciales, on utilise en plus de la mousse ou des feuilles de polyéthylène. Faites en sorte que cet emballage soit recyclé par une entreprise spécialisée de récupération et de recyclage.
Avertissement !
Les appareils pour applications à oxygène sont mis sous film plastique et portent un autocollant avec la mention "Oxygene! Use no Oil". Ce film plastique ne doit être retiré que juste avant le montage de l'appareil ! Voir remarque au chapitre "Montage".

Transport
Le transport doit s'effectuer en tenant compte des indications faites sur l'emballage de transport. Le non-respect peut entraîner des dommages à l'appareil.

Inspection du transport
La livraison doit être vérifiée immédiatement après réception quant à son intégralité et à d'éventuels dommages dus au transport. D'éventuels dommages de transport constatés ou des vices cachés sont à traiter en conséquence.

Stockage
Les colis sont à conserver fermés jusqu'au montage en veillant à respecter les marquages de positionnement et de stockage apposés à l'extérieur.
Sauf autre indication, entreposer les colis en respectant les conditions suivantes :
- Ne pas entreposer à l'extérieur
- Entreposer dans un lieu sec et sans poussière
- Ne pas exposer à des produits agressifs
- Protéger contre les rayons du soleil
- Éviter des secousses mécaniques

Température de stockage et de transport
- Température de transport et de stockage voir au chapitre "Annexe - Caractéristiques techniques - Conditions ambiantes"
- Humidité relative de l'air 20 ... 85 %
4 Monter

4.1 Remarques fondamentales concernant l'utilisation de l'appareil

Aptitude aux conditions process

Assurez-vous que tous les éléments de l'appareil se trouvant dans le process, en particulier la cellule de mesure, le joint et le raccord process, soient appropriés aux conditions du process. Cela concerne en particulier la pression process, la température process ainsi que les propriétés chimiques du ou des produit(s).

Vous trouverez de plus amples informations dans le chapitre "Caractéristiques techniques" et sur la plaque signalétique.

Humidité

Utilisez les câbles recommandés (voir au chapitre "Raccordement à l'alimentation") et serrez bien le presse-étoupe.

Vous protègerez en plus votre appareil contre l'infiltration d'humidité en orientant le câble de raccordement devant le presse-étoupe vers le bas. Ainsi, l'eau de pluie ou de condensat pourra s'égoutter. Cela concerne en particulier les montages à l'extérieur ou dans des lieux où il faut s'attendre à de l'humidité (due par exemple à des processus de nettoyage) ou encore dans des cuves réfrigérées ou chauffées.

Aération

L'aération du boîtier de l'électronique est réalisée par un élément filtre disposé au niveau des presse-étoupe.

Fig. 10: Position de l'élément filtre dans les boîtiers à chambre unique et à deux chambres

1 Élément filtre pour aération du boîtier de l'électronique
2 Obturateur

Information:

Il faut veiller, pendant le fonctionnement de l'appareil, à ce que l'élément filtre soit exempt de dépôts. Pour le nettoyage, n'utilisez pas de nettoyeur haute pression.

Organe déprimogène

Les déprimogènes sont calculés pour certaines données de tuyauterie et de fonctionnement. Pour cette raison, les données de tuyauterie sont contrôlées avant l'installation sur la voie de mesure et les n° de voies de mesure sont comparés.

Vous pouvez obtenir des indications détaillées concernant le montage d'un déprimogène dans la norme DIN EN ISO 5167 ainsi que dans les documents de l'appareil de chaque fabricant.

Prises de pression

Vous pourrez vous reporter aux recommandations générales relatives à la pose de prises de pression des normes nationales et internatio-
nales respectives. La pose de prises de pression à l'extérieur nécessite une protection efficace contre le gel, p.ex. par un traçage vapeur de la conduite. Les prises de pression doivent être posées avec une pente monotone d'au moins 10 %.

Vibrations
En cas de fortes vibrations à l'emplacement de mise en œuvre, il est recommandé d'utiliser la version d'appareil avec électronique externe.

Limites de température
De plus hautes températures process signifient souvent aussi de plus hautes températures ambiantes pour l'électronique et le câble de raccordement. Assurez-vous que les limites supérieures de températures indiquées au chapitre "Caractéristiques techniques" ne sont pas dépassées dans la zone du boîtier de l'électronique et du câble de raccordement.

4.2 Informations concernant les applications à oxygène
L'oxygène et d'autres gaz peuvent exploser en présence de graisses, lubrifiants et matières synthétiques, si bien qu'il convient de prendre les mesures préventives suivantes :

- Tous les composants de l'installation comme par exemple les appareils de mesure doivent être nettoyés selon les directives de la BAM (DIN 19247)
- Selon le matériau du joint, certaines températures et pressions maximales ne doivent pas être dépassées pour des applications à oxygène, voir chapitre "Caractéristiques techniques"

Danger !
La feuille PE recouvrant les appareils destinés à une application à oxygène ne doit être enlevée que juste avant le montage. Après avoir retiré la protection du raccord process, vous pourrez voir distinctement le marquage "O₂" sur le raccord. Évitez absolument toute application d'huile, de graisse et de crasse. Danger d'explosion !

4.3 Indications de montage et de raccordement
Lors du raccordement du DPT-10 sur la voie de mesure, le côté positif/négatif du composant de raccordement au process doit être respecté. Vous pouvez reconnaître le côté positif au moyen de "+" et le côté négatif au moyen de "-" sur le composant de raccordement au process à côté des brides ovales.
Fig. 11: Caractérisation pour côté positif / négatif sur le composant de raccordement au process

1. Côté positif
2. Côté négatif

Disposition de montage

La figure suivante montre les éléments pour un montage sur tuyauterie et un exemple de disposition de montage avec manifold.

Fig. 12: Disposition de montage pour un montage sur tuyauterie

1. Étrier pour montage sur conduite
2. Équerre de montage
3. Vis de purge
4. Vis de fixation
5. DPT-10
6. Joint en PTFE
7. Manifold
8. Adaptateur pour bride ovale
9. Vis de fixation
10. Prise de pression

Manifolds

Les manifolds permettent une installation et une mise en service simple du capteur de pression différentielle. Ils séparent le capteur de...
pression différentielle du côté du process et permettent en outre une vérification de la voie de mesure. Ils sont disponibles en version 3 et 5 voies. La vanne de compensation intégrée permet une compensation de pression entre côté positif et négatif lors de la mise en service. Grâce au manifold, il est possible de démonter le DPT-10 sans interrompre le process. Cela signifie une productivité de l'installation plus élevée et une mise en service ou une maintenance encore plus simple.

Le manifold 3 voies avec bride des deux côtés permet une liaison mécaniquement stable avec le DPT-10 et, par ex., les points d'extraction ou la plaque à brides d'un tube de Pitot. Pour le manifold 5 voies, deux vannes supplémentaires permettent la purge ou la vérification du DPT-10 lorsqu'il est installé.

Raccord manifold 3 voies

La figure suivante montre le raccord d'un manifold 3 voies.

Fig. 13: Raccord d'un manifold 3 voies

1. Raccord process
2. Raccord process
3. Vanne d'isolement
4. Vanne d'isolement
5. Vanne d'équilibrage
La figure suivante représente le raccordement du manifold 3 voies avec bride des deux côtés.

Fig. 14: Raccord d'un manifold 3 voies avec bride des deux côtés

1 Raccord process
2 Raccord process
3 Vanne d'isolement
4 Vanne d'isolement
5 Vanne d'équilibrage

La figure suivante montre le raccordement du manifold 5 voies.
4.4 Disposition de mesure débit

Dans les gaz

→ Installez le DPT-10 au dessus du point de mesure pour que la condensation puisse s'écouler dans la conduite de process.
Dans des vapeurs

1. Installez le DPT-10 en dessous du point de mesure
2. Installez les pots de condensation à la même hauteur que les piquages de prélèvement et à distance égale au DPT-10
3. Avant la mise en service, remplissez les prises de pression à la hauteur des pots de condensation
Fig. 18: Disposition des éléments pour mesure de débit dans des vapeurs

1. Pots de condensation
2. Diaphragme ou tube de Pitot
3. Vannes d'arrêt
4. DPT-10
5. Vannes de décharge et de purge
6. Manifold 3 voies

Lors de l'utilisation d'un manifold à 5 voies, les vannes de décharge et de purge sont déjà intégrées.

dans les liquides

1. Installez le DPT-10 en dessous du point de mesure pour que les prises de pression soient toujours remplies de liquide et que les bulles de gaz puissent remonter vers la conduite de process
2. Pour les mesures dans des produits contenant des particules solides comme les fluides encrassés par exemple, le montage de pots de purge et de vannes de purge est judicieux pour pouvoir recueillir les dépôts et les évacuer
3. Avant la mise en service, remplissez les prises de pression à la hauteur des pots de condensation
Fig. 19: Disposition des éléments pour mesure de débit dans des liquides
1 Diaphragme ou tube de Pitot
2 Vannes d'arrêt
3 DPT-10
4 Séparateur
5 Vannes de purge
6 Manifold 3 voies

4.5 Disposition de mesure niveau

Dans un réservoir ouvert avec prise de pression
1. Installez le DPT-10 en dessous du raccord de mesure inférieur pour que les conduites de pression active soient toujours remplies de liquide
2. Le côté (-) est ouvert à la pression atmosphérique
3. Pour les mesures dans des liquides contenant des particules solides, le montage de pots de purge et de vannes de purge est judicieux pour pouvoir recueillir les dépôts et les évacuer.
Dans un réservoir ouvert avec séparateur simple

1. Installez le DPT-10 directement sur le réservoir
2. Le côté (-) est ouvert à la pression atmosphérique

Dans un réservoir fermé avec prises de pression

1. Installez le DPT-10 en dessous du raccord de mesure inférieur pour que les conduites de pression active soient toujours remplies de liquide
2. Raccordez toujours le côté négatif au dessus du niveau maximal
3. Pour les mesures dans des produits contenant des particules solides comme les fluides encrassés par exemple, le montage de pots de purge et de vannes de purge est judicieux pour pouvoir recueillir les dépôts et les évacuer
Dans un réservoir fermé avec séparateur simple

1. Installez le DPT-10 directement sur le réservoir
2. Raccordez toujours le côté négatif au dessus du niveau maximal
3. Pour les mesures dans des produits contenant des particules solides comme les fluides encrassés par exemple, le montage de pots de purge et de vannes de purge est judicieux pour pouvoir recueillir les dépôts et les évacuer

Fig. 22: Disposition des éléments pour mesure de niveau dans un réservoir fermé

1. Vannes d'arrêt
2. DPT-10
3. Séparateur
4. Vannes de purge
5. Manifold 3 voies
Dans un réservoir fermé avec séparateur double

1. Installez le DPT-10 en dessous du séparateur inférieur
2. La température ambiante pour les deux capillaires doit être la même

Information:
La mesure de niveau est garantie uniquement entre le bord supérieur du séparateur inférieur et le bord inférieur du séparateur supérieur.

Dans un réservoir clos avec colonne humide avec prise de pression

1. Installez le DPT-10 en dessous du raccord de mesure inférieur pour que les conduites de pression active soient toujours remplies de liquide
2. Raccordez toujours le côté négatif au dessus du niveau maximal
3. Le pot de condensation assure une pression constante côté négatif.
4. Pour les mesures dans des produits contenant des particules solides comme les fluides encrassés par exemple, le montage de pots de purge et de vannes de purge est judicieux pour pouvoir recueillir les dépôts et les évacuer.

Fig. 25: Disposition des éléments pour mesure de niveau dans un réservoir fermé avec colonne humide

1. Pot de condensation
2. Vannes d'arrêt
3. DPT-10
4. Séparateur
5. Vannes de purge
6. Manifold 3 voies

Dans un réservoir fermé avec colonne humide et séparateur simple

1. Installez le DPT-10 directement sur le réservoir
2. Raccordez toujours le côté négatif au dessus du niveau maximal
3. Le pot de condensation assure une pression constante côté négatif.
4. Pour les mesures dans des produits contenant des particules solides comme les fluides encrassés par exemple, le montage de pots de purge et de vannes de purge est judicieux pour pouvoir recueillir les dépôts et les évacuer.
4.6 **Disposition de mesure densité et interface**

Mesure de densité

Dans un réservoir avec un niveau modifiable et une densité homogène, une mesure de densité peut être réalisée avec un capteur de pression différentielle. Le raccordement au réservoir est effectué par le séparateur en deux points de mesure. Afin d’atteindre une précision de mesure élevée, ceux-ci doivent être aussi loin que possible l’un de l’autre. La mesure de densité n’est garantie que lorsque le niveau est au-dessus du point de mesure supérieur. Si le niveau baisse au-dessous du point de mesure supérieur, la mesure de densité est interrompue.

Cette mesure de densité fonctionne aussi bien dans des réservoirs ouverts que fermés. Veillez à ce que les petites modifications de densité ne causent que de petites modifications sur la pression différentielle mesurée. La plage de mesure sélectionnée doit être adaptée.

La mesure de densité est effectuée dans le mode de fonctionnement mesure de niveau.

1. Installez le DPT-10 en dessous du séparateur inférieur
2. La température ambiante pour les deux capillaires doit être la même

Exemple pour une mesure de densité :

- Distance entre les deux points de mesure : 0,3 m
- Densité min. : 1000 kg/m³
- Densité max. : 1200 kg/m³
- Pression différentielle mesurée : \(\Delta p = \rho \cdot g \cdot h \)

Le réglage min. est effectué pour la pression différentielle qui est mesurée à une densité de 1,0 :

\[\Delta p = \rho \cdot g \cdot h \]
4 Monter

\[\Delta p = \rho \cdot g \cdot h\]

\[= 1000 \text{ kg/m}^3 \cdot 9,81 \text{ m/s}^2 \cdot 0,3 \text{ m}\]

\[= 2943 \text{ Pa} = 29,43 \text{ mbar}\]

Le réglage max. est effectué pour la pression différentielle qui est mesurée à une densité de 1,2 :

\[\Delta p = \rho \cdot g \cdot h\]

\[= 1200 \text{ kg/m}^3 \cdot 9,81 \text{ m/s}^2 \cdot 0,3 \text{ m}\]

\[= 3531 \text{ Pa} = 35,31 \text{ mbar}\]

Fig. 27: Disposition de mesure pour la mesure de densité

Mesure d'interface

Dans un réservoir avec niveau modifiable, une mesure d'interface peut être réalisée avec un capteur de pression différentielle. Le raccordement au réservoir est effectué par le séparateur en deux points de mesure. Une mesure d'interface n'est possible que lorsque les densités des deux produits restent constantes et que la couche d'interface est toujours située entre les deux points de mesure. Le niveau total doit être au-dessus du point de mesure supérieur. La mesure de densité fonctionne aussi bien dans des réservoirs ouverts que fermés.

Exemple pour une mesure d'interface :

Distance entre les deux points de mesure : 0,3 m
Densité min. : 800 kg/m\(^3\)
Densité max. : 1000 kg/m\(^3\)

Le réglage min. est effectué pour la pression différentielle qui survient à une densité de 0,8 :

\[\Delta p = \rho \cdot g \cdot h\]

\[= 800 \text{ kg/m}^3 \cdot 9,81 \text{ m/s}^2 \cdot 0,3 \text{ m}\]

\[= 2354 \text{ Pa} = 23,54 \text{ mbar}\]

Le réglage max. est effectué pour la pression différentielle qui survient à une densité de 1,0 :

\[\Delta p = \rho \cdot g \cdot h\]

\[= 1000 \text{ kg/m}^3 \cdot 9,81 \text{ m/s}^2 \cdot 0,3 \text{ m}\]

\[= 2943 \text{ Pa} = 29,43 \text{ mbar}\]

3. Installez le DPT-10 en dessous du séparateur inférieur
4. La température ambiante pour les deux capillaires doit être la même
4.7 Disposition de mesure pression différentielle

Dans des gaz et des vapeurs

→ Installez le DPT-10 au dessus du point de mesure pour que la condensation puisse s'écouler dans la conduite de process.

La purge d'air est réalisée à l'aide des vis de purge de l'appareil, le manifold à 5 voies permet la purge des lignes.

Dans les installations à vapeur et à condensat

→ Monter le DPT-10 au-dessous de la voie de mesure pour permettre l'accumulation de condensat dans les prises de pression.

Fig. 28: Disposition de mesure pour la mesure d'interface

Fig. 29: Disposition des éléments pour mesure de pression différentielle entre deux tuyauterises dans des gaz et des vapeurs

1. DPT-10
2. Manifold 3 voies
3. Vannes d'arrêt
4. Tuyauteries
1. Installez le DPT-10 en dessous du point de mesure pour que les prises de pression soient toujours remplies de liquide et que les bulles de gaz puissent remonter vers la conduite de process.

2. Pour les mesures dans des produits contenant des particules solides comme les fluides encrassés par exemple, le montage de pots de purge et de vannes de purge est judicieux pour pouvoir recueillir les dépôts et les évacuer.
Pour l'utilisation des systèmes séparateurs dans tous les produits

1. Installez le séparateur avec capillaires par le haut ou latéralement sur la conduite
2. Pour les applications sous vide : installez le DPT-10 en dessous du point de mesure
3. La température ambiante pour les deux capillaires doit être la même

Fig. 32: Disposition des éléments pour mesure de pression différentielle dans des gaz, des vapeurs et des liquides

1. Séparateurs avec raccord union
2. Capillaire
3. p.ex. filtre
4. DPT-10

4.8 Montage boîtier externe

1. Marquer les trous de perçage selon le schéma de perçage suivant
2. Fixer la plaque de montage mural en fonction du matériau de la paroi avec quatre vis
Montez la plaque de montage mural de telle façon que le presse-étoupe du socle soit orienté vers le bas. Le socle du boîtier peut être installé sur la plaque murale décalé de 180°.

4.9 Contrôle de l'installation

Après le montage de l'appareil, procédez aux contrôles suivants :

- Toutes les vis ont-elles bien été serrées ?
- Vis de fermeture et vis de purge fermées
5 Raccordement à l'alimentation en tension

5.1 Préparation du raccordement

Consignes de sécurité

Respectez toujours les consignes de sécurité suivantes :

- Raccorder l'appareil uniquement hors tension
- En cas de risque de surtensions, installer des appareils de protection contre les surtensions.

En atmosphères explosibles, il faudra respecter les réglementations respectives ainsi que les certificats de conformité et d'examen de type des capteurs et appareils d'alimentation.

Tension d'alimentation

L'alimentation de tension et le signal courant s'effectuent par le même câble de raccordement bifilaire. La plage de la tension d'alimentation peut différer en fonction de la version de l'appareil.

Vous trouverez les données concernant l'alimentation de tension au chapitre "Caractéristiques techniques".

Veillez à une séparation sûre entre le circuit d'alimentation et les circuits courant secteur selon DIN EN 61140 VDE 0140-1.

Prenez en compte les influences supplémentaires suivantes pour la tension de service :

- La tension de sortie du bloc d'alimentation peut diminuer sous charge nominale (avec un courant capteur de 20,5 mA ou 22 mA en cas de signalisation de défaut).
- Influence d'autres appareils dans le circuit courant (voir valeurs de charge au chapitre "Caractéristiques techniques")

Câble de raccordement

L'appareil sera raccordé par du câble bifilaire usuel non blindé. Si vous vous attendez à des perturbations électromagnétiques pouvant être supérieures aux valeurs de test de l'EN 61326 pour zones industrielles, il faudra utiliser du câble blindé.

Utilisez du câble de section ronde. Un diamètre extérieur du câble compris entre 5 et 9 mm (0.2 ... 0.35 in) garantit l'étanchéité du presse-étoupe. Si vous utilisez du câble d'un autre diamètre ou de section différente, changez le joint ou utilisez un presse-étoupe adéquat.

Nous vous recommandons d'utiliser du câble blindé en fonctionnement HART multidrop.

Entrée de câble ½ NPT

En ce qui concerne l'appareil avec entrée de câble ½ NPT et boîtier plastique, une douille taraudée ½" métallique a été moulée dans le boîtier plastique.

Avertissement !

Le vissage du presse-étoupe NPT et/ou du tube en acier dans la douille taraudée doit s'effectuer sans aucune graisse. Les graisses usuelles peuvent contenir des additifs susceptibles d'attaquer la jonction entre douille taraudée et boîtier. Ce qui entraînerait la résistance de la liaison, mais aussi l'étanchéité du boîtier.
Blindage électrique du câble et mise à la terre

Si un câble blindé est nécessaire, le blindage du câble doit être relié au potentiel de terre suivant les nécessités de votre installation d'un ou des deux côtés. Dans le capteur, le blindage doit être raccordé directement à la borne de terre interne. La borne de terre externe se trouvant sur le boîtier doit être reliée à basse impédance au conducteur d'équipotentialité.

Si des courants compensateurs de potentiel peuvent apparaître, il faudra relier l'extrémité du blindage côté exploitation par un condensateur en céramique (par exemple 1 nF, 1500 V). Vous supprimerez ainsi les courants compensateurs de potentiel à basse fréquence tout en conservant la protection contre les signaux perturbateurs de haute fréquence.

Attention !

Il existe des différences de potentiel extrêmement importantes à l'intérieur d'installations galvaniques ainsi que dans des réservoirs avec protection cathodique contre la corrosion. Il peut y avoir ici des courants de compensation extrêmement importants via le blindage du câble dans le cas d'une mise à la terre du blindage aux deux extrémités. Afin d'éviter cela, le blindage du câble ne doit être relié, pour ces applications, que d'un côté au potentiel de terre dans l'armoire de commande. Le blindage du câble ne doit pas être raccordé à la borne de mise à la terre dans le capteur et la borne de mise à la terre externe du boîtier ne doit pas être reliée à la compensation de potentiel !

Information:

Les parties métalliques de l'appareil (antenne, capteur de mesure, tube de référence, etc.) sont conductrices et reliées aux bornes de mise à la terre interne et externe. Cette liaison existe, soit directement en métal, soit, pour les appareils avec électronique externe, via le blindage de la ligne de liaison spéciale. Vous trouverez des indications concernant les lignes de potentiel à l'intérieur de l'appareil dans le chapitre "Caractéristiques techniques".

Respectez les règlements d'installation en vigueur pour les applications Ex. En particulier, il est important de veiller à ce qu'aucun courant compensateur de potentiel ne circule par le blindage du câble. Si la mise à la terre est réalisée des deux côtés, vous pouvez l'éviter en utilisant un condensateur approprié comme indiqué précédemment ou en réalisant une liaison équipotentielle séparée.

5.2 Étapes de raccordement

Procédez comme suit :
1. Dévisser le couvercle du boîtier
2. Si un module de réglage et d'affichage est installé, enlevez-le en le tournant vers la gauche.
3. Desserrez l'écrou flottant du presse-étoupe
4. Enlevez la gaine du câble de raccordement sur 10 cm env. et dénudez l'extrémité des conducteurs sur 1 cm env.
5. Introduire le câble dans le capteur en le passant par le presse-étoupe.
5 Raccordement à l'alimentation en tension

6. Soulever les leviers d'ouverture des bornes avec un tournevis (voir figure suivante).
7. Enficher les extrémités des conducteurs dans les bornes ouvertes suivant le schéma de raccordement.
8. Rabattre les leviers d'ouverture des bornes, le ressort des bornes est bien audible au rabattement du levier.
10. Raccorder le blindage à la borne de terre interne et relier la borne de terre externe à la liaison équipotentielle.
12. Revisser le couvercle du boîtier.
Le raccordement électrique est ainsi complété.

Fig. 34: Étapes de raccordement 6 et 7

5.3 Boîtier à chambre unique

Les schémas suivants sont valables aussi bien pour la version non-Ex que pour la version Ex-ia.
5 Raccordement à l'alimentation en tension

Compartiment électronique et de raccordement

1 Bornes auto-serrantes pour l'alimentation de tension
2 Borne de terre pour le raccordement du blindage du câble
3 Bornes auto-serrantes pour le raccordement de l'unité de réglage et d'affichage externe
4 Connecteur pour interface service

Schéma de raccordement

Fig. 36: Schéma de raccordement boîtier à chambre unique
1 Alimentation en tension, sortie signal

5.4 Boîtier à deux chambres

Les croquis suivants sont valables aussi bien pour la version non Ex que pour la version Ex ia. La version Exd vous sera décrite au paragraphe suivant.
5 Raccordement à l'alimentation en tension

Compartiment de l'électronique

Fig. 37: Compartiment électronique du boîtier à deux chambres
1 Connecteur pour interface service
2 Ligne de liaison interne au compartiment de raccordement
3 Bornes de raccordement pour l’unité de réglage et d’affichage

Compartiment de raccordement

Fig. 38: Compartiment de raccordement boîtier à deux chambres
1 Bornes auto-serrantes pour l'alimentation de tension
2 Connecteur pour interface service
3 Borne de terre pour le raccordement du blindage du câble
5 Raccordement à l'alimentation en tension

Schéma de raccordement

Fig. 39: Schéma de raccordement du boîtier à deux chambres
1 Alimentation en tension, sortie signal

Connecteur M12 x 1 pour unité de réglage et d'affichage externe

Fig. 40: Vue sur le connecteur
1 Pin 1
2 Pin 2
3 Pin 3
4 Pin 4

<table>
<thead>
<tr>
<th>Broche de contact</th>
<th>Couleur ligne de liaison dans le capteur</th>
<th>Borne Préamplificateur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1</td>
<td>Brun(e)</td>
<td>5</td>
</tr>
<tr>
<td>Pin 2</td>
<td>Blanc(he)</td>
<td>6</td>
</tr>
<tr>
<td>Pin 3</td>
<td>Bleu(e)</td>
<td>7</td>
</tr>
<tr>
<td>Pin 4</td>
<td>Noir(e)</td>
<td>8</td>
</tr>
</tbody>
</table>
5.5 Boîtier à deux chambres Ex d

Compartiment de l'électronique

Fig. 41: Compartiment électronique du boîtier à deux chambres
1 Connecteur pour service
2 Ligne de liaison interne au compartiment de raccordement
3 Bornes de raccordement pour l'unité de réglage et d'affichage

Compartiment de raccordement

Fig. 42: Compartiment de raccordement boîtier à deux chambres Ex-d
1 Bornes auto-serrantes pour la tension d'alimentation et le blindage du câble
2 Borne de terre pour le raccordement du blindage du câble
5 Raccordement à l'alimentation en tension

Schéma de raccordement

Fig. 43: Schéma de raccordement pour boîtier à deux chambres Ex-d
1 Alimentation en tension, sortie signal

Connecteur M12 x 1 pour unité de réglage et d'affichage externe

Fig. 44: Vue sur le connecteur
1 Pin 1
2 Pin 2
3 Pin 3
4 Pin 4

<table>
<thead>
<tr>
<th>Broche de contact</th>
<th>Couleur ligne de liaison dans le capteur</th>
<th>Borne Préamplificateur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1</td>
<td>Brun(e)</td>
<td>5</td>
</tr>
<tr>
<td>Pin 2</td>
<td>Blanc(he)</td>
<td>6</td>
</tr>
<tr>
<td>Pin 3</td>
<td>Bleu(e)</td>
<td>7</td>
</tr>
<tr>
<td>Pin 4</td>
<td>Noir(e)</td>
<td>8</td>
</tr>
</tbody>
</table>

Affectation des conducteurs câble de raccordement

Fig. 45: Affectation des conducteurs câble de raccordement
1 Brun (+) et bleu (-) vers la tension d'alimentation et/ou vers le système d'exploitation
2 Blindage

5.6 Version IP 66/IP 68, 1 bar
5.7 Phase de mise en marche

Phase de mise en marche Après le raccordement du DPT-10 à l'alimentation de tension ou après un retour de celle-ci, l'appareil effectuera tout d'abord un autotest durant env. 30 secondes comprenant :

- Vérification interne de l'électronique
- Affichage du type d'appareil, de la version firmware ainsi que du TAG du capteur (désignation du capteur)
- Un bond rapide du signal de sortie pour env. 15 secondes sur le courant de défaut réglé.

Le courant respectif sera ensuite délivré sur la ligne (les valeurs correspondent au niveau actuel ainsi qu'aux réglages déjà réalisés, par exemple au réglage d'usine).
6 Configuration avec le module de réglage et d'affichage

6.1 Description succincte
Le module de réglage et d'affichage sert à la configuration des capteurs, à l'affichage et au diagnostic de leurs valeurs de mesure. Il peut être utilisé dans les variantes de boîtiers et les appareils suivants :

- Tous les capteurs DPT-10 et IPT-1*, aussi bien dans le boîtier à une chambre que dans celui à deux chambres (au choix dans le compartiment électronique ou de raccordement)
- Unité de réglage et d'affichage externe

Remarque:
Vous trouverez des informations détaillées sur le réglage dans le manuel de mise en service "Module de réglage et d'affichage".

6.2 Insérer le module de réglage et d'affichage
Vous pouvez insérer/enlever le module de réglage et d'affichage n'importe quand. Pour cela, il n'est pas nécessaire de couper la tension d'alimentation.

Procédez de la manière suivante pour le montage :

1. Dévisser le couvercle du boîtier
2. Poser le module de réglage et d'affichage sur l'électronique dans la position désirée (choix entre quatre positions décalées de 90°).
3. Mettre le module de réglage et d'affichage sur l'électronique et le tourner légèrement vers la droite jusqu'à ce qu'il vienne s'encliqueter
4. Visser fermement le couvercle du boîtier avec hublot

Le démontage s'effectue de la même façon, mais en sens inverse.
Le module de réglage et d'affichage est alimenté par le capteur, un autre raccordement n'est donc pas nécessaire.
Fig. 46: Insérer le module de réglage et d'affichage

Remarque:

Si le module de réglage et d'affichage doit demeurer définitivement dans votre appareil pour disposer en permanence d'un affichage des valeurs de mesure, il vous faudra un couvercle plus haut muni d'un hublot.
6.3 Système de réglage

Fig. 47: Éléments de réglage et d'affichage

1. Affichage LC
2. Affichage du numéro de menu
3. Touches de réglage

Fonctions de touche

- **Touche [OK]** :
 - Aller vers l'aperçu des menus
 - Confirmer le menu sélectionné
 - Éditer les paramètres
 - Enregistrer la valeur

- **Touche [->]** pour :
 - Changer de menu
 - Sélectionner une mention dans la liste
 - Sélectionner une position d'édition

- **Touche [+]** :
 - Modifier la valeur d'un paramètre

- **Touche [ESC]** :
 - Interrompre la saisie
 - Retour au menu supérieur

Système de réglage

Vous ferez le réglage de votre capteur par les quatre touches du module de réglage et d'affichage. L'afficheur LCD vous indique chacun des menus et sous-menus. Les différentes fonctions vous ont été décrites précédemment. Un retour automatique à l'affichage des valeurs de mesure se fera env. 10 minutes après le dernier appui sur une touche. À ce moment là, les valeurs n'ayant pas encore été validées avec [OK] seront perdues.

6.4 Régler des paramètres

Introduction

Le DPT-10 dispose de paramètres de configuration généraux, qui sont utilisés également pour d'autres principes de mesure, ainsi que de paramètres de configuration spécifiques à l'appareil. Les
paramètres de configuration généraux sont décrits dans le manuel de mise en service "Module de réglage et d'affichage".

Les paramètres de configuration spécifiques à l'appareil sont décrits dans ce chapitre.

Information:
Si les limites des paramètres de réglage sont dépassées, le message "Valeur en dehors de la plage" apparaît sur l'afficheur. Il est alors possible d'interrompre l'édition avec [ESC] ou de reprendre la valeur limite affichée avec [OK].

Application
Le DPT-10 peut être utilisé pour la mesure de pression différentielle, de niveau, de débit ainsi que la mesure de densité et d'interface. La sélection de chaque application est effectuée dans le point du menu "Application". Selon l'application sélectionnée, le réglage est effectué en tant que réglage zéro/span ou réglage min./max.

Information:
Les applications mesure de densité et d'interface sont également réalisées par l'application niveau de mesure.

Procédez comme suit pour sélectionner l'application Mesure de pression différentielle ou de débit :

1. À l'affichage des valeurs de mesure, appuyer sur [OK] pour obtenir l'affichage de l'aperçu des menus.

 | Réglage de base |
 | Afficheur |
 | Diagnostic |
 | Service |
 | Info |

2. Confirmez le menu "Réglage de base" avec [OK].

 | Application |
 | Niveau ▼ |

3. Confirmez le point du menu "Application" avec [OK].

 Attention !
 Tenir compte de l'avertissement : "La sortie peut se modifier".

4. Sélectionner avec [->] "OK" et confirmer avec [OK].
5. Sélectionnez l'application désirée dans la liste de sélection, par ex. "Débit", puis confirmez avec [OK].

Unité de réglage
Dans ce point de menu, vous sélectionnez l'unité de réglage ainsi que l'unité pour l'affichage de la température.

Pour la sélection de l'unité de réglage (dans l'exemple le changement de mbar en bar), procédez comme suit :

1. À l'affichage des valeurs de mesure, appuyer sur [OK] pour obtenir l'affichage de l'aperçu des menus.

3. Activer avec [OK] la sélection et sélectionner avec [->] l'"unité de réglage".

Information:
Si vous sélectionnez le réglage avec une unité de hauteur (par exemple pour une mesure de niveau), il faudra saisir en plus la densité. Procédez comme suit pour la saisie de la densité:

1. À l'affichage des valeurs de mesure, appuyer sur [OK] pour obtenir l'affichage de l'aperçu des menus.

2. Confirmer avec [OK] le menu "Réglage de base", le menu "Unité de réglage" apparaît sur l'afficheur.

3. Activer avec [OK] la sélection et sélectionner avec [->] l'unité désirée (dans l'exemple m).

4. Confirmer avec [OK], il vous apparaît le sous-menu "Unité de densité".

5. Sélectionner avec [->] l'unité désirée, par ex. kg/dm³ et confirmer avec [OK], il vous apparaît le sous-menu "Densité".

6. Saisir la valeur de densité désirée avec [->] et [+], confirmer avec [OK] et passer avec [->] à la correction de position. Ainsi, l'unité de réglage vient d'être modifiée de bar en m.

Pour la sélection de l'unité de température, procédez comme suit :

1. Activer avec [OK] la sélection et sélectionner avec [->] "l'unité de température".
3. Valider avec [OK].
Vous venez de changer l'unité de température de °C à °F.

Correction de position

La correction de position compense l'influence de la position de montage de l'appareil sur la valeur de mesure. Dans ce point de menu sont affichées la valeur de l'offset et, en dessous, la valeur de mesure actuelle.

Procédez comme suit:
1. Au point de menu "Correction de position" activer la sélection avec [OK].

 ![Correction de position](image)

2. Sélectionnez avec [->], p.ex. validez la valeur de mesure actuelle 0,0035 bar.

 ![Correction de position](image)

3. Valider avec [OK].

 ![Correction de position](image)

4. Allez au réglage mini. (zéro) avec [->].

La valeur de mesure actuelle a été corrélée (valeur = 0) et la valeur de correction est affichée avec un signe inversé comme valeur d'offset.

Si une valeur connue qui diffère de la valeur de mesure actuelle doit être reprise comme valeur de correction de position, sélectionnez la fonction "Éditer" et saisissez la valeur désirée.

Réglage zéro pour pression différentielle

La pression différentielle min. est entrée dans ce point de menu.

Procédez comme suit:
1. Éditez, dans le point de menu " zéro ", la valeur en bar avec [OK].

 ![Réglage zéro](image)

2. Réglez avec [+] et [->] la valeur désirée.

Pour un réglage avec pression, il vous suffit de saisir la valeur de mesure actuelle affichée à la partie inférieure de l'afficheur.
6 Configuration avec le module de réglage et d'affichage

Le réglage zéro est maintenant terminé.

Information:
Le réglage zéro décale la valeur du réglage span. L'échelle de mesure, c'est-à-dire la différence entre ces valeurs, restera inchangée.

RÉGLAGE SPAN POUR PRESSION DIFFÉRENTIELLE

La pression différentielle max. est entrée dans ce point de menu.

Procédez comme suit :
1. Éditez, dans le point de menu "span", la valeur en bar avec [OK].

Information:
Si l'appareil n'a pas encore été réglé, la pression affichée pour 100 % correspond à la plage de mesure nominale du capteur (dans l'exemple ci-dessus 500 mbar).

2. Réglez avec [+] et [-] la valeur désirée.

Pour un réglage avec pression, il vous suffit de saisir la valeur de mesure actuelle affichée à la partie inférieure de l'afficheur.

Le réglage span est maintenant terminé.

RÉGLAGE MIN. POUR NIVEAU

Procédez comme suit :
1. Éditez au menu "RÉGLAGE MIN." la valeur % avec [OK].

2. Réglez avec [+] et [-] la valeur désirée.
4. Réglez avec [+] et [-] la valeur en bar désirée.
5. Validez avec OK et allez avec [-] au réglage maxi.

Pour un réglage avec remplissage, il vous suffit de saisir la valeur de mesure actuelle affichée à la partie inférieure de l'afficheur.

Le réglage min. est maintenant terminé.

RÉGLAGE MAX. POUR NIVEAU

Procédez comme suit :
1. Éditer au menu "RÉGLAGE MAX." la valeur % avec [OK].
Information:
Si l'appareil n'a pas encore été réglé, la pression affichée pour 100 % correspond à la plage de mesure nominale du capteur (dans l'exemple ci-dessus 500 mbar).

Pour un réglage avec remplissage, il vous suffit de saisir la valeur de mesure actuelle affichée à la partie inférieure de l'afficheur.

Le réglage max. est maintenant terminé.

Réglage min. pour densité

Pour le réglage min. pour la densité, un remplissage du réservoir n'est pas nécessaire. Vous trouverez les exemples de nombre dans le chapitre Montage, Disposition de mesure densité et interface de ce manuel.

Procédez comme suit :
1. Éditer au menu "Réglage min." la valeur % avec [OK].
2. Réglez avec [+] et [->] la valeur désirée, par ex., 100 %.
5. Validez avec OK et allez avec [->] au réglage maxi.

Pour un réglage avec remplissage, il vous suffit de saisir la valeur de mesure actuelle affichée à la partie inférieure de l'afficheur.

Le réglage min. est maintenant terminé.

Réglage max. pour densité

Pour le réglage max. pour la densité, un remplissage du réservoir n'est pas nécessaire. Vous trouverez les exemples de nombre dans le chapitre Montage, Disposition de mesure densité et interface de ce manuel.

Procédez comme suit :
1. Éditer au menu "Réglage max." la valeur % avec [OK].

Information:
Si l'appareil n'a pas encore été réglé, la pression affichée pour 100 % correspond à la plage de mesure nominale du capteur (dans l'exemple ci-dessus 100 mbar).
2. Réglez avec [->] et [OK] la valeur désirée, par ex., 0,0 %

Pour un réglage avec remplissage, il vous suffit de saisir la valeur de mesure actuelle affichée à la partie inférieure de l'afficheur.

Le réglage max. est maintenant terminé.

Réglage mini. pour débit

Procédez comme suit :
1. Éditez, dans le point de menu "Réglage mini.", la valeur en bar avec [OK].

Pour un réglage avec débit, il vous suffit de saisir la valeur de mesure actuelle affichée à la partie inférieure de l'afficheur.

Information:
Le DPT-10 est également approprié à une mesure de débit bidirectionnelle (débit dans les deux directions). La sélection a lieu dans le point du menu " Courbe de linéarisation ". Pour la mesure de débit bidirectionnelle, la valeur de réglage min. doit être égale à la valeur de réglage max. négative.

Exemple : valeur de réglage max. +100 mbar, la valeur de réglage min. -100 mbar doit donc être saisie.

Le réglage min. est maintenant terminé.

Réglage maxi. pour débit

Procédez comme suit :
1. Éditez, dans le point de menu "Réglage maxi.", la valeur en bar avec [OK].

Pour un réglage avec débit, il vous suffit de saisir la valeur de mesure actuelle affichée à la partie inférieure de l'afficheur.

Le réglage max. est maintenant terminé.
Courbe de linéarisation pour niveau

Dans le cas de la mesure de niveau, une linéarisation est nécessaire pour toutes les cuves dont le volume de remplissage n’augmente pas de façon linéaire lorsque la hauteur de remplissage croît - p. ex. pour une cuve cylindrique couchée ou une cuve sphérique - et pour les quelles l’affichage ou la sortie du volume de remplissage est souhaité.

Pour ces cuves, des courbes de linéarisation adéquates ont été mémorisées. Elles indiquent la relation entre la hauteur de remplissage en pourcentage et le volume de remplissage. En activant la courbe adéquate, vous obtiendrez l’affichage correct du volume de remplissage en pourcentage.

![Courbe de linéarisation
Linéaire](image)

Saisissez les paramètres désirés avec les touches respectives, sauvagez vos saisies puis passez au point de menu suivant avec les touches [->].

⚠️ **Avertissement !**

Pour l’utilisation du DPT-10 avec un agrément respectif comme partie d’une sécurité antidébordement selon WHG (norme allemande), il faudra tenir compte des points suivants :

Si une courbe de linéarisation est sélectionnée, le signal de mesure n’est plus obligatoirement linéaire par rapport avec la hauteur de remplissage. Ceci doit être particulièrement pris en compte lors du réglage du point de commutation sur le détecteur de niveau.

Courbe de linéarisation pour débit

Le carré du débit est proportionnel à la différence de pression sur le diaphragme ou le tube de Pitot :

\[
(Q_n)^2 = c \cdot \Delta p
\]

Une extraction racine est nécessaire afin de créer une relation linéaire entre le débit et la grandeur de sortie :

\[
Q_n = \sqrt{(c \cdot \Delta p)}
\]

Le DPT-10 dispose d’une fonction extraction de racine. Elle est sélectionnée dans le point du menu "Courbe de linéarisation".

![Courbe de linéarisation
Linéaire](image)

Saisissez les paramètres désirés avec les touches respectives, sauvagez vos saisies puis passez au point de menu suivant avec les touches [->].

Information:

Lors de la sélection Débit bidirectionnel, la valeur min. doit être saisie avec un signe négatif.

Élimination de l’écoulement minimum dans le cas du débit

Pour certaines applications, les petits débits ne doivent pas être mesurés. L’élimination de l’écoulement minimum permet de supprimer
6 Configuration avec le module de réglage et d'affichage

la valeur de débit jusqu'à une valeur en % déterminée. La valeur par défaut s'élève à 5 % de la valeur débit max., correspondant à 0,25 % de la valeur de pression différentielle. La valeur limite est 50 %. Cette fonction dépend de la fonction de linéarisation sélectionnée et n'est disponible que pour une courbe caractéristique " extraction de racine carrée ".

La courbe caractéristique " extraction de racine carrée " / " bidirectionnelle-extraction de racine carrée " est particulièrement raide à l'origine, c'est-à-dire que de petites variations de la pression différentielle mesurée se traduisent par de grandes variations du signal de sortie. L'élimination de l'écoulement minimum stabilise la sortie signal.

Le DPT-10 dispose de deux compteurs totalisateurs internes pour lesquels vous pouvez régler Volume ou Masse comme fonction de comptage ainsi que l'unité séparément.

Procédez comme suit :

1. Sélectionnez le point de menu " Compteur totalisateur sous-total " par ex.

2. Activez la fonction " Modifier les réglages " avec [OK].

3. Avec [OK], validez " Organe déprimogène ".

4. Sélectionnez avec [-] la grandeur désirée et validez avec [OK].

5. Sélectionnez l'unité d'étalonnage de l'organe déprimogène avec [-], p. ex. m³/s, et validez avec [OK].

6. Éditez avec [OK] et réglez les valeurs désirées avec [+] et [-].

7. Validez avec [OK] et retournez à l'affichage du compteur totalisateur sous-total.

8. Sélectionnez l'unité du compteur-totalisateur avec [-], réglez l'unité souhaitée avec [-], par ex. m³/s et validez avec [OK].
Le réglage du compteur totalisateur sous-total est maintenant terminé et la fonction de comptage est activée.

La procédure de réglage du compteur totalisateur total est analogue à celle du compteur totalisateur sous-total.

Copier données capteur
Cette fonction permet de copier des données de paramétrage dans le module de réglage et d'affichage depuis le capteur ou inversement. Vous trouverez une description détaillée de la fonction dans le manuel de mise en service "Module de réglage et d'affichage".

Cette fonction assure la copie des données suivantes :
- Représentation de la valeur de mesure
- Application
- Réglage
- Atténuation
- Courbe de linéarisation
- Élimination de l'écoulement min.
- TAG capteur
- Valeur d'affichage
- Unité d'affichage
- Calibrage
- Sortie courant
- Unité de réglage
- Langue

Les données suivantes, importantes pour la sécurité, ne sont pas copiées :
- Mode de fonctionnement HART
- PIN

Reset
Planification de base
Le reset "Planification de base" rétablit les valeurs reset pour les paramètres des points de menu suivants (voir tableau) :

<table>
<thead>
<tr>
<th>Plage de menu</th>
<th>Point de menu</th>
<th>Valeur reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Réglages de base</td>
<td>Réglage min./zéro</td>
<td>Début de plage de mesure</td>
</tr>
<tr>
<td></td>
<td>Réglage Span/Maxi.</td>
<td>Fin de plage de mesure</td>
</tr>
<tr>
<td></td>
<td>Densité</td>
<td>1 kg/l</td>
</tr>
<tr>
<td></td>
<td>Unité de densité</td>
<td>kg/l</td>
</tr>
<tr>
<td></td>
<td>Atténuation</td>
<td>1 s</td>
</tr>
<tr>
<td></td>
<td>Linéarisation</td>
<td>Linéaire</td>
</tr>
<tr>
<td></td>
<td>TAG capteur</td>
<td>Capteur</td>
</tr>
</tbody>
</table>
6 Configuration avec le module de réglage et d'affichage

Afficheur
- **Valeur d'affichage**: Pression différentielle
- **Unité d'affichage**: Masse/kg
- **Calibrage**: 0.00 à 100.0
- **Affichage point décimal**: 8888.8

Diagnostic
- **Compteur-totalisateur**: 0.0000 10⁻⁰⁰ gal
- **Compteur totalisateur sous-total**: 0.0000 10⁻⁰⁰ gal

Service
- **Sortie courant - courbe caractéristique**: 4 … 20 mA
- **Sortie courant - mode erreur**: < 3.6 mA
- **Sortie courant - courant min.**: 3.8 mA
- **Sortie courant - courant max.**: 20.5 mA

Avec un "reset", les valeurs des points de menus suivants **ne seront pas** remises à la valeur reset :

Plage de menu
<table>
<thead>
<tr>
<th>Point de menu</th>
<th>Valeur reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Régulations de base</td>
<td></td>
</tr>
<tr>
<td>Unité de réglage</td>
<td>bar</td>
</tr>
<tr>
<td>Unité de température</td>
<td>°C</td>
</tr>
<tr>
<td>Correction de position</td>
<td>Pas de reset</td>
</tr>
<tr>
<td>Afficheur</td>
<td></td>
</tr>
<tr>
<td>Éclairage</td>
<td>Pas de reset</td>
</tr>
<tr>
<td>Service</td>
<td></td>
</tr>
<tr>
<td>Langue</td>
<td>Pas de reset</td>
</tr>
<tr>
<td>Mode de fonctionnement HART</td>
<td>Pas de reset</td>
</tr>
<tr>
<td>Application</td>
<td>Pas de reset</td>
</tr>
</tbody>
</table>

Index suiveur
Les valeurs de température et de pression min. et max. seront remises à la valeur actuelle respective.

Compteur-totalisateur
Les compteurs totalisateurs total et sous-total seront remis à zéro.

Réglages optionnels
Des possibilités supplémentaires de réglage et de diagnostic, comme par exemple le calibrage de l'affichage, la simulation ou la représentation de la courbe de tendance vous seront indiquées au plan des menus suivant. Une description plus détaillée de ces points de menus vous sera donnée dans la notice de mise en service du "Module de réglage et d'affichage".

6.5 Plan du menu

Information:
En fonction de votre équipement et installation, les fenêtres de menus représentées en gris-clair seront disponibles ou pas.
6 Configuration avec le module de réglage et d’affichage

Réglage de base pression différentielle

- Réglage de base
 - Afficheur
 - Diagnostic
 - Service
 - Info

Application 1.1
Pression différentielle ▼

Unité 1.1
Unité de réglage bar ▼
Unité de température °C ▼

Correction de position 1.2
Offset
= -0.0035 bar
0.0000 bar

Zéro 1.3
000.0 %
= 0.0000 bar
0.0000 bar

Offset DP
= -0.0035 bar
0.0000 bar

Span 1.4
100.00 %
= 0.5000 bar
0.0000 bar

Atténuation 1.5
1 s

Courbe de linéarisation 1.6
- Linéaire
- Cuve cylindrique couchée
- Cuve sphérique à programmation libre

TAG capteur 1.7
Capteur

Réglage de base niveau

- Réglage de base
 - Afficheur
 - Diagnostic
 - Service
 - Info

Application 1.1
Niveau ▼

Unité 1.1
Unité de réglage bar ▼
Unité de température °C ▼

Correction de position 1.2
Offset
= -0.0035 bar
0.0000 bar

Réglage min. 1.3
000.0 %
= 0.0000 bar
0.0000 bar

Réglage max. 1.4
100.00 %
= 0.5000 bar
0.0000 bar

Atténuation 1.5
1 s

Courbe de linéarisation 1.6
- Linéaire
- Cuve cylindrique couchée
- Cuve sphérique à programmation libre

TAG capteur 1.7
Capteur
6 Configuration avec le module de réglage et d'affichage

Réglage de base débit

- ◀ Réglage de base
 - Afficheur
 - Diagnostic
 - Service
 - Info

 Application 1.1
 - Débit ▼

 Unité 1.1
 - Unité de réglage
 - bar ▼
 - Unité de température
 - °C ▼

 Correction de position 1.2
 - Offset ▶
 - -0.0035 bar
 - 0.0000 bar

 Réglage min. 1.3
 - 000.0 % ▶
 - 0.0000 bar
 - 0.0000 bar

 Atténuation 1.5
 - 1 s

 Courbe de linéarisation 1.6
 - Linéaire proportionnel au débit bidirectionnel-linéaire ▼

 Élimination de l'écoulement min. 1.7
 - Activée ▼

 TAG capteur 1.8
 - Capteur

Afficheur

- ◀ Réglage de base
 - Afficheur
 - Diagnostic
 - Service
 - Info

 Valeur d'affichage 2.1
 - Pression différentielle ▼

 Valeur d'affichage ▼ 2.1
 - Calibré(e)

 Unité d'affichage 2.2
 - Volume ▼
 - l ▼

 Éclairage 2.3
 - Éteint ▼

 Calibrage 2.3
 - 0 % = 0.0
 - 100 % = 100.0
6 Configuration avec le module de réglage et d'affichage

Diagnostic

- Réglage de base
- Afficheur
 - Diagnostic
- Service
- Info

- Index suiveur
 - p-min.: -5,8 mbar
 - p-max.: 167,5 mbar
 - T-min.: -12,5 °C
 - T-max.: +85,5 °C

- État appareil
 - OK

- Courbe de tendance
 - Démarrer la courbe de tendance ?

- Compteur-totalisateur
 - sous-total
 - 0.0000 10\(^{3}\) gal
 - Modifier les réglages ?

Service

- Réglage de base
- Afficheur
- Diagnostic
 - Service
- Info

- Sortie courant
- Courbe caractéristique : 4-20 mA
- Mode défaut : < 3.6 mA
- Courant min. : 3.8 mA
- Courant max. : 20.5 mA

- Mode de fonctionnement
 - HART
 - Standard
 - Adresse 0

- Simulation
 - Démarrer la simulation

- Reset
 - Sélectionner reset

- Langue
 - Allemand

Info

- Réglage de base
- Afficheur
- Diagnostic
- Service
 - Info

- Type d'appareil
- Numéro de série 12345678

- Date d'étalonnage
- Version logicielle

- Dernière modification
 - via PC

- Caractéristiques du capteur
 - Afficher maintenant ?
6.12 Sauvegarde des données de paramétrage

Nous vous recommandons de noter les données réglées, par exemple dans cette notice de mise en service et de les archiver à la suite. Ainsi, elles seront disponibles pour une utilisation ultérieure et à des fins de maintenance.

Si le DPT-10 est équipé d’un module de réglage et d’affichage, les données les plus importantes pourront être lues du capteur vers le module de réglage et d’affichage. La procédure vous sera décrite dans la notice technique "Module de réglage et d’affichage" au point de menu "Copier les données capteur". Les données y resteront mémorisées à demeure même en cas d’une coupure d’alimentation du capteur.

Au cas où il serait nécessaire de remplacer le capteur, il suffit d’enficher le module de réglage et d’affichage dans l’appareil de remplacement et de transmettre les données dans le capteur au menu "Copier données capteur".
7 Mettre en service avec le programme de configuration AMS™

7.1 Paramétrage avec AMS™

Pour les capteurs WIKA, il existe également des descriptions d'appareils sous forme de DD pour le programme AMS™. Les descriptions d'appareils sont déjà contenues dans la version actuelle AMS™. Pour les versions AMS™ plus anciennes, elles peuvent être téléchargées sur internet gratuitement.

Pour ce faire, allez via www.WIKA.com et "Téléchargements" au point "Logiciels".
8 Mettre en service

8.1 Sélectionner le mode de fonctionnement
Les modes de fonctionnement suivants peuvent être réglés au DPT-10 :
- Mesure de débit
- Mesure de niveau
- Mesure de pression différentielle

8.2 Mesure de débit
Pour les mesures de débit, le DPT-10 est généralement utilisé sans séparateur.
Avant le réglage du DPT-10, il faut que les prises de pression soient nettoyées et que l'appareil soit rempli de fluide.

Remarques

Disposition de mesure pour les gaz

Fig. 48: Disposition de mesure recommandée pour les gaz

I DPT-10
II Manifold 3 voies
2,4 Vannes d'isolement
3 Vanne d'équilibrage
6,7 Vis de purge au DPT-10
A, B Vannes d'arrêt
Fig. 49: Disposition de mesure recommandée pour la mesure de débit dans des gaz, raccordement par manifold 3 voies avec bride des deux côtés

I DPT-10
II Manifold 3 voies
3 Vanne d’équilibrage
6,7 Vis de purge au DPT-10

Fig. 50: Disposition de mesure recommandée pour les liquides

I DPT-10
II Manifold 3 voies
III Séparateur
1,5 Vannes de purge
2,4 Vannes d’isolement
3 Vanne d’équilibrage
6,7 Vis de purge au DPT-10
A, B Vannes d’arrêt

Préparer le réglage

Procédez comme suit :

1. Fermer la vanne 3
2. Remplir la chaîne de mesure de produit.
 Pour cela ouvrir les vannes A, B (si existante) ainsi que 2 et 4 : le
 produit pénètre dans l'appareil
 Le cas échéant, nettoyer les prises de pression : pour les gaz en
 les purgeant d'air comprimé, pour les liquides en les rinçant.\footnote{1}
 Pour ce faire, fermer les vannes 2 et 4 pour isoler l'appareil.
 Ouvrir ensuite les vannes 1 et 5 pour purger/rincer les prises de
 pression
 Fermer les vannes 1 et 5 (si existante) après le nettoyage
3. Purger l'appareil, pour ce faire :
 Ouvrir les vannes 2 et 4 : le fluide pénètre dans l'appareil
 Fermer la vanne 4 : le côté négatif est fermé
 Ouvrir la vanne 3 : équilibrage du côté (+) et (-)
 Ouvrir les vannes 6 et 7 un court instant puis les refermer : remplir
 complètement l'appareil de fluide et enlever l'air
4. Effectuer la correction de position si les conditions suivantes sont
 remplies. Si ces conditions ne sont pas remplies, effectuer la
 correction de position seulement après l'étape 6.
 Conditions :
 Le process ne peut pas être isolé.
 Les points de prise de pression (A et B) se trouvent à la même
 hauteur géodésique.
5. Mettre la voie de mesure en service, pour ce faire :
 Fermer la vanne 3 : séparer le côté (+) du côté (-)
 Ouvrir la vanne 4 : raccorder le côté (-)
 Maintenant :
 les vannes/robinets 1, 3, 5, 6 et 7 sont fermés\footnote{2}
 Ouvrez les vannes 2 et 4
 Ouvrez les vannes A et B
6. Effectuer la correction de position si le process peut être isolé.
 Dans ce cas, l'étape 5 peut être sautée.
 Procéder ensuite au réglage min./max. comme décrit au chapitre
 "Réglage des paramètres ".

8.3 Mesure de niveau

Pour les mesures de niveau, le DPT-10 est utilisé dans toutes les
versions.
Le DPT-10 avec séparateur double est immédiatement prêt à fonc-
tionner.
Le DPT-10 sans séparateur ou avec séparateur simple est prêt à
fonctionner après ouverture d'une vanne d'arrêt éventuellement
installée.

\footnote{1}{Dans le cas d'un agencement avec manifold à 5 voies.}
\footnote{2}{Vannes/robinets 1, 3, 5 : dans le cas d'un agencement avec manifold à 5 voies.}
Avant le réglage du DPT-10 sans séparateur ou avec séparateur simple, il faut que les prises de pression soient nettoyées et que l'appareil soit rempli de fluide.

Fig. 51: Disposition de mesure recommandée pour les réservoirs ouverts

1. DPT-10
2. Séparateur
3. Vanne de purge
4. Vis de purge au DPT-10
5. Vanne d'arrêt

Préparer le réglage

Procédez comme suit :

1. Remplir le réservoir jusqu'à la prise de pression inférieure.
2. Remplir la chaîne de mesure de produit.
 Pour ce faire, ouvrir la vanne A : le fluide pénètre dans l'appareil.
3. Purger l'appareil
 Ouvrir la vanne 6 un court instant puis la refermer : remplir complètement l'appareil de fluide et enlever l'air.
4. Mettre la voie de mesure en service
 Maintenant :
 vanne A est ouverte et vanne 6 est fermée

Procédez ensuite au réglage, voir ci-dessous.
Disposition de mesure pour les réservoirs fermés

Fig. 52: Disposition de mesure recommandée pour les réservoirs fermés

I	DPT-10
II	Manifold 3 voies
III	Séparateur
1, 5 Vannes de purge	
2, 4 Vannes d'isolement	
6, 7 Vis de purge au DPT-10	
A, B Vannes d'arrêt	

Préparer le réglage

Procédez comme suit :

1. Remplir le réservoir jusqu'à la prise de pression inférieure
2. Remplir la chaîne de mesure de produit
 - Fermer la vanne 3 : séparer le côté (+) du côté (-)
 - Ouvrir les vannes A et B : ouvrir les vannes d'arrêt
3. Purger le côté (+), vider éventuellement le côté (-)
 - Ouvrir les vannes 2 et 4 : remplir le produit du côté (+)
 - Ouvrir les vannes 6 et 7 un court instant puis les refermer : remplir complètement le côté (+) de fluide et enlever l'air.
4. Mettre la voie de mesure en service
 - Maintenant :
 - vannes 3, 6 et 7 sont fermées
 - vannes 2, 4, A et B sont ouvertes
 - Procédez ensuite au réglage, voir ci-dessous.
Mettre en service

Disposition de mesure pour les réservoirs fermés avec colonne humide

Procédez comme suit :

1. Remplir le réservoir jusqu'à la prise de pression inférieure
2. Remplir la chaîne de mesure de produit
 - Ouvrir les vannes A et B : ouvrir les vannes d'arrêt
 - Remplir la prise de pression (-) jusqu'à hauteur du pot de condensation
3. Purger l'appareil, pour ce faire :
 - Ouvrir les vannes 2 et 4 : introduire le fluide
 - Ouvrir la vanne 3 : équilibrage du côté (+) et (-)
 - Ouvrir les vannes 6 et 7 un court instant puis les refermer : remplir complètement l'appareil de fluide et enlever l'air
4. Mettre la voie de mesure en service, pour ce faire :
 - Fermer la vanne 3 : séparer le côté (+) du côté (-)
 - Ouvrir la vanne 4 : raccorder le côté (-)

Maintenant :

Fig. 53: Disposition de mesure recommandée pour les réservoirs fermés avec colonne humide

I DPT-10
II Manifold 3 voies
III Séparateur
IV Pot de condensation
1, 5 Vannes de purge
2, 4 Vannes d'isolement
3 Vanne d'équilibrage
6, 7 Vis de purge au DPT-10
A, B Vannes d'arrêt

Préparer le réglage
8 Mettre en service

vannes 3, 6 et 7 sont fermées
Vannes 2, 4, A et B ouvertes.
Procéder ensuite au réglage min./max. comme décrit au chapitre "Régler des paramètres".

8.4 Mesure de densité et d’interface
Pour les mesures de densité et d’interface, le DPT-10 est utilisé avec séparateur double.
Dans cette version, le DPT-10 est immédiatement prêt à fonctionner.

8.5 Mesure de pression différentielle
Pour les mesures de pression différentielle, le DPT-10 est utilisé sans séparateur ou avec séparateur double.
Le DPT-10 avec séparateur double est immédiatement prêt à fonctionner.
Avant le réglage du DPT-10 sans séparateur, il faut que les prises de pression soient nettoyées et que l’appareil soit rempli de fluide.

Remarques
Pour les mesures de densité et d’interface, le DPT-10 est utilisé avec séparateur double.
Le DPT-10 avec séparateur double est immédiatement prêt à fonctionner.
Avant le réglage du DPT-10 sans séparateur, il faut que les prises de pression soient nettoyées et que l’appareil soit rempli de fluide.

Fig. 54: Disposition de mesure recommandée pour les gaz
I DPT-10
II Manifold 3 voies
2, 4 Vannes d’isolement
3 Vanne d’équilibrage
6, 7 Vis de purge au DPT-10
A, B Vannes d’arrêt
8 Mettre en service

Disposition de mesure pour les liquides

Fig. 55: Disposition de mesure recommandée pour les liquides

I DPT-10
II Manifold 3 voies
III Séparateur
1,5 Vannes de purge
2,4 Vannes d'isolement
3 Vanne d'équilibrage
6,7 Vis de purge au DPT-10
A, B Vannes d'arrêt

Préparer le réglage

Procédez comme suit :
1. Fermer la vanne 3
2. Remplir la chaîne de mesure de produit.
 Pour ce faire, ouvrir les vannes A, B, 2, 4 : le fluide pénètre dans l’appareil.
 Le cas échéant, nettoyer les prises de pression : pour les gaz en les purgeant d’air comprimé, pour les liquides en les rinçant.3)
 Fermer les vannes 2 et 4 pour isoler l’appareil
 Ouvrir les vannes 1 et 5
 Fermer les vannes 1 et 5
3. Purger l’appareil, pour ce faire :
 Ouvrir les vannes 2 et 4 : le fluide pénètre dans l’appareil
 Fermer la vanne 4 : le côté négatif est fermé
 Ouvrir la vanne 3 : équilibrage du côté (+) et (-)
 Ouvrir les vannes 6 et 7 un court instant puis les refermer : remplir complètement l’appareil de fluide et enlever l’air
4. Mettre la voie de mesure en service, pour ce faire :
 Fermer la vanne 3 : séparer le côté (+) du côté (-)

3) Dans le cas d’un agencement avec manifold à 5 voies.
Ouvrir la vanne 4 : raccorder le côté (-)
Maintenant :
les vannes/robinets 1, 3, 5, 6 et 7 sont fermés
Ouvrez les vannes 2 et 4
Ouvrez les vannes A et B (si vous en avez)

Procéder ensuite au réglage min./max. comme décrit au chapitre "Régler des paramètres".

\[4\] Vannes/robinets 1, 3, 5 : dans le cas d’un agencement avec manifold à 5 voies.
9 Maintenance et élimination des défauts

9.1 Entretien

Si l'on respecte les conditions d'utilisation, aucun entretien particulier ne sera nécessaire en fonctionnement normal.

Dans certaines applications, des colmatages sur les membranes séparatrices peuvent influencer le résultat de la mesure. Prenez donc des mesures préventives, selon le capteur et l'application, pour éviter des colmatages importants et surtout des encroûtements.

9.2 Éliminer les défauts

C'est à l'exploitant de l'installation qu'il incombe la responsabilité de prendre les mesures appropriées pour éliminer les défauts survenus.

Le DPT-10 vous offre une très haute sécurité de fonctionnement. Toutefois, des défauts peuvent apparaître pendant le fonctionnement de l'appareil. Ces défauts peuvent par exemple avoir les causes suivantes :

- Capteur
- Process
- Tension d'alimentation
- Exploitation des signaux

Il faudra vérifier en premier le signal de sortie et évaluer ensuite les signalisations de défaut affichées par le module de réglage et d'affichage. La procédure vous sera décrite par la suite. Vous pouvez également obtenir d'autres diagnostics plus détaillés en vous servant d'un ordinateur équipé du logiciel PACTware et du DTM respectif. Cela vous permettra dans la plupart des cas de trouver la cause du défaut et d'y remédier.

Raccorder au capteur un multimètre portable dans la plage adéquate suivant le schéma de raccordement.

<table>
<thead>
<tr>
<th>Codes d'erreur</th>
<th>Cause</th>
<th>Élimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manque de stabilité du signal 4 ... 20 mA</td>
<td>Variations de niveau</td>
<td>Régler le temps d'intégration via le module de réglage et d'affichage ou via PACTware</td>
</tr>
<tr>
<td>Signal 4 ... 20 mA manque</td>
<td>Mauvais raccordement à l'alimentation en tension</td>
<td>Vérifier le raccordement selon le chapitre "Étapes de raccordement" et le corriger si besoin est selon le chapitre "Schéma de raccordement"</td>
</tr>
<tr>
<td>Aucune alimentation en tension</td>
<td></td>
<td>Vérifier s'il y a une rupture de lignes et la réparer si besoin est</td>
</tr>
<tr>
<td>Tension de service trop basse ou résistance de charge trop haute</td>
<td></td>
<td>Vérifier et adapter si nécessaire</td>
</tr>
</tbody>
</table>
Codes d'erreur, Cause et Élimination

<table>
<thead>
<tr>
<th>Codes d'erreur</th>
<th>Cause</th>
<th>Élimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal courant supérieur à 22 mA ou inférieur à 3,6 mA</td>
<td>Préamplificateur ou cellule de mesure défectueux</td>
<td>Remplacer l'appareil ou le retourner au service réparation</td>
</tr>
<tr>
<td>E013</td>
<td>Pas de valeur de mesure existante(^5)</td>
<td>Remplacer l'appareil ou le retourner au service réparation</td>
</tr>
<tr>
<td>E017</td>
<td>Écart de réglage trop petit</td>
<td>Recommencer avec des valeurs modifiées</td>
</tr>
<tr>
<td>E036</td>
<td>Logiciel du capteur non utilisable</td>
<td>Effectuer une mise à niveau du logiciel ou renvoyer l'appareil au service réparation</td>
</tr>
<tr>
<td>E041</td>
<td>Erreur du hardware</td>
<td>Remplacer l'appareil ou le retourner au service réparation</td>
</tr>
</tbody>
</table>

Pour les applications Ex, il faut respecter les règles concernant l'interconnexion des circuits courant de sécurité intrinsèque.

Comportement après élimination des défauts

Suivant la cause du défaut et les mesures prises pour l'éliminer, il faudra le cas échéant recommencer les étapes décrites au chapitre "Mise en service".

9.3 Réparation de l'appareil

Vous trouverez les indications concernant le renvoi de l'appareil dans la rubrique "Service" sur notre page Internet locale.

Si une réparation venait à s'imposer, contactez au préalable votre interlocuteur local :

- Remplir un formulaire pour chaque appareil
- Indiquer une éventuelle contamination
- Prière de nettoyer et d'emballer l'appareil soigneusement de façon à ce qu'il ne puisse être endommagé
- Prière de joindre à l'appareil le formulaire rempli et éventuellement une fiche de sécurité

\(^5\) Une signalisation de défaut peut également apparaître, si la pression est supérieure à la plage de mesure nominale.
10 Démonter

10.1 Étapes de démontage

Attention !

Avant de démonter l'appareil, prenez garde aux conditions de processus dangereuses comme par exemple pression dans la cuve ou la tuyauterie, hautes températures, produits agressifs ou toxiques etc. Suivez les indications des chapitres "Montage" et "Raccordement à l'alimentation en tension" et procédez de la même manière mais en sens inverse.

10.2 Recycler

L'appareil se compose de matériaux recyclables par des entreprises spécialisées. À cet effet, l'électronique a été conçue facilement déachable et les matériaux utilisés sont recyclables.

Directive DEEE 2002/96/CE

Le présent appareil n'est pas soumis à la directive DEEE 2002/96/CE et aux lois nationales respectives. Apportez l'appareil directement à une entreprise de recyclage spécialisée et n'utilisez pas les points de récupération communaux. Ceux-ci sont destinés uniquement à des produits à usage privé conformément à la réglementation DEEE.

Une récupération professionnelle évite les effets négatifs pouvant agir sur l'homme et son environnement tout en préservant la valeur des matières premières par un recyclage adéquat.

Matériaux : voir au chapitre "Caractéristiques techniques"

Au cas où vous n'auriez pas la possibilité de faire recycler le vieil appareil par une entreprise spécialisée, contactez-nous. Nous vous conseillerons sur les possibilités de reprise et de recyclage.
11 Annexe

11.1 Caractéristiques techniques

Données générales

<table>
<thead>
<tr>
<th>Type de pression</th>
<th>Pression différentielle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principe de mesure</td>
<td>Piézorésistive</td>
</tr>
<tr>
<td>Interface de communication</td>
<td>bus I²C</td>
</tr>
</tbody>
</table>

Matériaux et poids

Matériau 316L correspond à acier inoxydable 1.4404 ou 1.4435

Matériaux, en contact avec le produit

- Raccord process, brides latérales C22.8, 316L, Alloy C276
- Membrane séparatrice 316L, Alloy C-276, tantale, Alloy C-276 revêtu or-rhodium
- Joint d'étanchéité FKM (Viton), FKM déshuilé et dégraissé, FKM pour applications à oxygène, PTFE, PTFE pour applications à oxygène, NBR, cuivre, cuivre pour applications à oxygène
- Vis de fermeture 316L

Liquide de transmission interne

Huile synthétique, huile halocarbone

Matériaux, sans contact avec le produit

- Boîtier de l'électronique en plastique PBT (polyester), en alu coulé sous pression laqué peinture poudre (polyester qualicoat)
- Boîtier d'électronique externe Plastique PBT (polyester)
- Socle, plaque de montage mural Plastique PBT (polyester)
- Joint d'étanchéité entre le socle du boîtier et la plaque de montage mural TPE (lié fixement)
- Anneau d'étanchéité couvercle du boîtier Silicone
- Hublot sur le couvercle du boîtier pour module de réglage et d'affichage Polycarbonate (listé UL-746-C)
- Vis et écrous pour brides latérales PN 160 : vis 6kt ISO 4014-M12 x 90-A4, PN 420 : écrou 6kt ISO 4032-M12-A4-bs
- Borne de mise à la terre 316Ti/316L
- Liaison conductrice Entre borne de mise à la terre et raccord process
- Câble de raccordement pour version IP 68 (1 bar) PE
- Câble de liaison entre capteur de mesure IP 68 et boîtier de l'électronique externe PUR
- Support de la plaque signalétique pour la version IP 68 sur le câble PE dur

6) Huile halocarbone : généralement dans les applications à oxygène, pas avec plages de mesure de vide et de pression absolue < 1 bar abs.
Coup de serrage maxi. vis étrier de montage 30 Nm
Coup de serrage maxi. vis socle boîtier externe 5 Nm (3.688 lbf ft)
Poids env. 4,2 … 4,5 kg (9.26 … 9.92 lbs), selon le raccord process

Grandeur de sortie

<table>
<thead>
<tr>
<th>Signal de sortie</th>
<th>4 … 20 mA/HART</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeurs de sortie HART</td>
<td></td>
</tr>
<tr>
<td>– Valeur HART (Primary Value)</td>
<td>Pression process</td>
</tr>
<tr>
<td>– Valeur HART (Secondary Value)</td>
<td>Température</td>
</tr>
<tr>
<td>Résolution du signal</td>
<td>1,6 μA</td>
</tr>
<tr>
<td>Signal défaut sortie courant (réglable)</td>
<td>valeur mA inchangée, 20,5 mA, 22 mA, < 3,6 mA</td>
</tr>
<tr>
<td>Courant de sortie max.</td>
<td>22 mA</td>
</tr>
<tr>
<td>Charge ohmique</td>
<td>Voir diagramme des charges sous alimentation</td>
</tr>
<tr>
<td>Recommandation NAMUR remplie</td>
<td>NE 43</td>
</tr>
</tbody>
</table>

Comportement dynamique - sortie

<table>
<thead>
<tr>
<th>Temps de mise en route</th>
<th>≤ 20 s</th>
</tr>
</thead>
</table>

![Graphique](image)

Fig. 56: Représentation du temps mort t_1 et de la constante de temps t_2

Le temps mort total indiqué ci-après est valable pour la sortie courant 4 … 20 mA :

<table>
<thead>
<tr>
<th>Version, plage de mesure nominale</th>
<th>Temps mort t_1</th>
<th>Constante de temps t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version de base, 10 mbar et 30 mbar</td>
<td>100 ms</td>
<td>250 ms</td>
</tr>
<tr>
<td>Version de base, 100 mbar</td>
<td>100 ms</td>
<td>180 ms</td>
</tr>
<tr>
<td>Version de base, 500 mbar</td>
<td>100 ms</td>
<td>180 ms</td>
</tr>
<tr>
<td>Version de base, 3 bar</td>
<td>100 ms</td>
<td>180 ms</td>
</tr>
</tbody>
</table>
Version, plage de mesure nominale

<table>
<thead>
<tr>
<th></th>
<th>Temps mort t_1</th>
<th>Constante de temps t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version de base, 16 bar et 40 bar</td>
<td>100 ms</td>
<td>180 ms</td>
</tr>
<tr>
<td>Version avec séparateur, toutes les plages de mesure nominales</td>
<td>en fonction du séparateur</td>
<td>en fonction du séparateur</td>
</tr>
</tbody>
</table>

Atténuation (63 % de la grandeur d’entrée)

0 … 999 s, réglable

Grandeur de sortie supplémentaire - température

L’exploitation s’effectue via signal de sortie HART-Multidrop, Profibus PA et Foundation Fieldbus

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plage</td>
<td>-50 ... +150 °C</td>
</tr>
<tr>
<td></td>
<td>(-58 ... +302 °F)</td>
</tr>
<tr>
<td>Résolution</td>
<td>1 °C (1.8 °F)</td>
</tr>
<tr>
<td>Précision dans la plage 0 ... +100 °C</td>
<td>±3 K</td>
</tr>
<tr>
<td></td>
<td>(+32 ... +212 °F)</td>
</tr>
<tr>
<td>Précision dans la plage -50 ... 0 °C</td>
<td>typ. ±3 K</td>
</tr>
<tr>
<td></td>
<td>(-58 ... +32 °F et +100 ... +150 °C)</td>
</tr>
<tr>
<td></td>
<td>(+212 ... +302 °F)</td>
</tr>
</tbody>
</table>

Grandeur d’entrée

<table>
<thead>
<tr>
<th>Grandeur de mesure</th>
</tr>
</thead>
<tbody>
<tr>
<td>pression différentielle, dont sont également déduits le débit et le niveau</td>
</tr>
</tbody>
</table>

Réglage pression différentielle

Plage d’étalonnage du réglage zéro/span se rapportant à la plage de mesure nominale :

- Valeur pression zéro -120 ... +120 %
- Valeur pression span zero + (-220 ... +220 %)

Réglage niveau

Plage d’étalonnage du réglage min./max. se rapportant à la plage de mesure nominale :

- Valeur en pourcent -10 ... +110 %
- Valeur pression -120 ... +120 %

Réglage débit

Plage d’étalonnage du réglage zéro/span se rapportant à la plage de mesure nominale :

- Valeur pression zéro -120 ... +120 %
- Valeur pression span -120 ... +120 %

Turn down max. recommandé 15 : 1 (pas de limite)

Plages de mesure nominales, limites de mesure et échelles de mesure étafonnables les plus petites

<table>
<thead>
<tr>
<th>Plage de mesure nominale</th>
<th>Limite de mesure inférieure</th>
<th>Limite de mesure supérieure</th>
<th>Échelle de mesure étafonnable la plus petite</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mbar (1 kPa)</td>
<td>-10 mbar (-1 kPa)</td>
<td>+10 mbar (+1 kPa)</td>
<td>0,25 mbar (25 Pa)</td>
</tr>
<tr>
<td>30 mbar (3 kPa)</td>
<td>-30 mbar (-3 kPa)</td>
<td>+30 mbar (+3 kPa)</td>
<td>0,3 mbar (30 Pa)</td>
</tr>
<tr>
<td>100 mbar (10 kPa)</td>
<td>-100 mbar (-10 kPa)</td>
<td>+100 mbar (+10 kPa)</td>
<td>1 mbar (100 Pa)</td>
</tr>
</tbody>
</table>

7) Il n’est pas possible d’étalonner des valeurs inférieures à -1 bar.
8) Il n’est pas possible d’étalonner des valeurs inférieures à -1 bar.
9) Il n’est pas possible d’étalonner des valeurs inférieures à -1 bar.
Annexe

<table>
<thead>
<tr>
<th>Plage de mesure nominale</th>
<th>Limite de mesure inférieure</th>
<th>Limite de mesure supérieure</th>
<th>Échelle de mesure éta- lonnable la plus petite</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 mbar (50 kPa)</td>
<td>-500 mbar (-50 kPa)</td>
<td>+500 mbar (+50 kPa)</td>
<td>5 mbar (500 Pa)</td>
</tr>
<tr>
<td>3 bar (300 kPa)</td>
<td>-3 bar (-300 kPa)</td>
<td>+3 bar (+300 kPa)</td>
<td>30 mbar (3 kPa)</td>
</tr>
<tr>
<td>16 bar (1600 kPa)</td>
<td>-16 bar (-1600 kPa)</td>
<td>+16 bar (+1600 kPa)</td>
<td>160 mbar (16 kPa)</td>
</tr>
<tr>
<td>40 bar (4000 kPa)</td>
<td>-40 bar (-4000 kPa)</td>
<td>+40 bar (+4000 kPa)</td>
<td>400 mbar (40 kPa)</td>
</tr>
</tbody>
</table>

Conditions de référence et grandeurs d’influence (selon DIN EN 60770-1)

Conditions de référence selon DIN EN 61298-1

- Température
 +18 ... +30 °C (+64 ... +86 °F)
- Humidité relative de l’air
 45 ... 75 %
- Pression d’air
 860 ... 1060 mbar/86 ... 106 kPa (12.5 ... 15.4 psig)

Définition de la courbe caractéristique

Réglage du point limite selon IEC 61298-2

Caractéristiques des courbes

Linéaire

Position de calibrage de la cellule de mesure

Verticale, c.-à-d. composant de raccordement au process vertical

Influence de la position de montage sur le point zéro

≤ 4 mbar\(^{10(11)}\)

Un décalage du point zéro en fonction de la position de montage peut être corrigé (voir aussi chapitre "Régler paramètres").

Position de l’échelle de mesure dans la plage de mesure basée sur le point zéro

Matériau de la membrane

316L, alloy C276, plaquage or-rhodium, monel

Huile de remplissage

Huile silicone

Matériau brides latérales

316L

Un décalage du point zéro en fonction de la position de montage peut être corrigé (voir aussi chapitre "Régler paramètres").

Écart de mesure calculé selon la méthode du point limite selon IEC 60770\(^{12}\)

Valable pour interfaces numériques (HART, Profibus PA, Foundation Fieldbus) ainsi que pour la sortie courant analogique 4 ... 20 mA. Les indications se rapportent à l’échelle de mesure réglée. Le turn down (TD) est le rapport plage de mesure nominale/échelle de mesure réglée.

Écart de mesure - toutes les versions

Pour une caractéristique à extraction de racine carrée : les données de précision du DPT-10 sont intégrées dans le calcul de précision du débit avec un facteur de 0,5

Écart de mesure - version de base

Cellule de mesure 10 mbar, 30 mbar

- Turn down 1 : 1 ±0,15 % de l’échelle de mesure réglée
- Turn down > 1 : 1 ±0,15 % de l’échelle de mesure réglée x TD

Cellule de mesure 100 mbar

\(^{10}\) Valeur maximale pour un composant de raccordement au process horizontal. La spécification est valable pour la versions de base sans séparateur. La valeur se multipliera par deux pour les appareils avec huile inerte.

\(^{11}\) Y compris la non-linéarité, l’hystérésis et la non-répétabilité.

\(^{12}\) Y compris la non-linéarité, l’hystérésis et la non-répétabilité.
- **Turn down 1 : 1 jusqu’à 4 : 1** ±0,075 % de l’échelle réglée
- **Turn down > 4 : 1** ±(0,012 x TD + 0,027) % de l’échelle réglée

Cellules de mesure ≥ 500 mbar
- **Turn down 1 : 1 jusqu’à 15 : 1** ±0,075 % de l’échelle réglée
- **Turn down > 15 : 1** ±(0,0015 x TD + 0,053) % de l’échelle réglée

Écart de mesure - Versions avec séparateurs

Cellule de mesure 100 mbar
- **Turn down 1 : 1 jusqu’à 4 : 1** ±0,075 % de l’échelle de mesure réglée + influence du séparateur
- **Turn down > 4 : 1** ±(0,012 x TD + 0,027) % de l’échelle de mesure réglée + influence du séparateur

Cellules de mesure ≥ 500 mbar
- **Turn down 1 : 1 jusqu’à 15 : 1** ±0,075 % de l’échelle de mesure réglée + influence du séparateur
- **Turn down > 15 : 1** ±(0,0015 % x TD + 0,053 %) de l’échelle de mesure réglée + influence du séparateur

Influence de la température du produit et de la température ambiante

Valable pour appareils en version de base avec sortie signal **numérique** (HART, Profibus PA, Foundation Fieldbus) ainsi que pour appareils avec sortie courant **analogique** 4 … 20 mA. Les indications se rapportent à l’échelle de mesure réglée. Turn down (TD) = plage de mesure nominale/échelle de mesure réglée.

<table>
<thead>
<tr>
<th>Plage de température</th>
<th>Plage de mesure</th>
<th>Variation thermique du signal zéro et de l’échelle de sortie, rapportée à l’échelle de mesure réglée</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10 ... +60 °C (+14 ... +140 °F)</td>
<td>10 mbar, 30 mbar</td>
<td>±(0,31 x TD + 0,06) %</td>
</tr>
<tr>
<td></td>
<td>100 mbar</td>
<td>±(0,18 x TD + 0,02) %</td>
</tr>
<tr>
<td></td>
<td>500 mbar, 3 bar</td>
<td>±(0,08 x TD + 0,05) %</td>
</tr>
<tr>
<td></td>
<td>16 bar</td>
<td>±(0,1 x TD + 0,1) %</td>
</tr>
<tr>
<td></td>
<td>16 bar</td>
<td>±(0,08 x TD + 0,05) %</td>
</tr>
<tr>
<td>-40 ... +10 °C (-40 ... +50 °F)</td>
<td>10 mbar, 30 mbar</td>
<td>±(0,45 x TD + 0,1) %</td>
</tr>
<tr>
<td>+60 ... +85 °C (+140 ... +185 °F)</td>
<td>100 mbar</td>
<td>±(0,3 x TD + 0,15) %</td>
</tr>
<tr>
<td></td>
<td>500 mbar, 3 bar</td>
<td>±(0,12 x TD + 0,1) %</td>
</tr>
<tr>
<td></td>
<td>16 bar</td>
<td>±(0,15 x TD + 0,2) %</td>
</tr>
<tr>
<td></td>
<td>40 bar</td>
<td>±(0,37 x TD + 0,1) %</td>
</tr>
</tbody>
</table>

Est valable en plus pour les appareils avec sortie courant **analogique** 4 … 20 mA et se rapporte à l’échelle de mesure réglée.

Variation thermique sortie courant

< 0,05 %/10 K, max. < 0,15 %, respectivement pour -40 à +80 °C (-40 à +176 °F)
Influence de la pression du système sur le zéro et l’échelle

Membrane en 316L, Alloy C276, Alloy C276 revêtu or-rhodium

<table>
<thead>
<tr>
<th>Cellule de mesure</th>
<th>10 mbar</th>
<th>30 mbar</th>
<th>100 mbar</th>
<th>500 mbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence de la pression du système sur le zéro</td>
<td>±0,15 % de URL/7 bar</td>
<td>±0,35 % de URL/70 bar</td>
<td>±0,15 % de URL/70 bar</td>
<td>±0,075 % de URL/70 bar</td>
</tr>
<tr>
<td>Influence de la pression du système sur l’échelle</td>
<td>±0,035 % de URL/7 bar</td>
<td>±0,14 % de URL/70 bar</td>
<td>±0,14 % de URL/70 bar</td>
<td>±0,14 % de URL/70 bar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cellule de mesure</th>
<th>3 bar</th>
<th>16 bar</th>
<th>40 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence de la pression du système sur le zéro</td>
<td>±0,075 % de URL/7 bar</td>
<td>±0,075 % de URL/70 bar</td>
<td>±0,075 % de URL/70 bar</td>
</tr>
<tr>
<td>Influence de la pression du système sur l’échelle</td>
<td>±0,14 % de URL/7 bar</td>
<td>±0,14 % de URL/70 bar</td>
<td>±0,14 % de URL/70 bar</td>
</tr>
</tbody>
</table>

Membrane en tantale

<table>
<thead>
<tr>
<th>Cellule de mesure</th>
<th>10 mbar</th>
<th>30 mbar</th>
<th>100 mbar</th>
<th>500 mbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence de la pression du système sur le zéro</td>
<td>±0,28 % de URL/7 bar</td>
<td>±0,70 % de URL/70 bar</td>
<td>±0,42 % de URL/70 bar</td>
<td>±0,14 % de URL/70 bar</td>
</tr>
<tr>
<td>Influence de la pression du système sur l’échelle</td>
<td>±0,28 % de URL/7 bar</td>
<td>±0,70 % de URL/70 bar</td>
<td>±0,42 % de URL/70 bar</td>
<td>±0,14 % de URL/70 bar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cellule de mesure</th>
<th>3 bar</th>
<th>16 bar</th>
<th>40 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence de la pression du système sur le zéro</td>
<td>±0,14 % de URL/7 bar</td>
<td>±0,14 % de URL/70 bar</td>
<td>±0,14 % de URL/70 bar</td>
</tr>
<tr>
<td>Influence de la pression du système sur l’échelle</td>
<td>±0,14 % de URL/7 bar</td>
<td>±0,14 % de URL/70 bar</td>
<td>±0,14 % de URL/70 bar</td>
</tr>
</tbody>
</table>

Précision totale

Total Performance - version de base
L’indication "Total Performance" englobe la non-linéarité y compris l’hystérésis et le non-reproductibilité, la variation thermique du point zéro et l’influence statique de la pression \(p_{st} = 70 \text{ bar} \).

Total Performance

- Membrane en 316L, Alloy, or-rhodium ±0,15 % de l’échelle de mesure réglée\(^{13}\)\(^{14}\)
- Membrane en tantale ±0,30 % de l’échelle de mesure réglée\(^{15}\)\(^{16}\)

Total Error - version de base

L’indication "Total Error" englobe la stabilité à long terme et la "total performance".

<table>
<thead>
<tr>
<th>Matériau de la membrane</th>
<th>Plage de mesure</th>
<th>Total Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>316L, Alloy, or-rhodium</td>
<td>< 500 mbar</td>
<td>0,33 % de la valeur de fin de plage de mesure/an</td>
</tr>
<tr>
<td></td>
<td>à partir de 500 mbar</td>
<td>0,20 % de la valeur de fin de plage de mesure</td>
</tr>
<tr>
<td>Tantale</td>
<td>< 500 mbar</td>
<td>0,48 % de la valeur de fin de plage de mesure/an</td>
</tr>
<tr>
<td></td>
<td>à partir de 500 mbar</td>
<td>0,35 % de la valeur de fin de plage de mesure/an</td>
</tr>
</tbody>
</table>

Temps de démarrage - toutes les versions

Temps de démarrage \(\leq 10 \text{ s} \)

Stabilité à long terme (selon DIN 16086 et IEC 60770-1)

Valable pour interfaces **numériques** (HART, Profibus PA, Foundation Fieldbus) ainsi que pour la sortie courant **analogique** 4 … 20 mA. Les indications se rapportent à la valeur de fin de plage de mesure.

<table>
<thead>
<tr>
<th>Plages de mesure</th>
<th>1 an</th>
<th>5 ans</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mbar, 100 mbar</td>
<td>±0,18 %</td>
<td>-</td>
</tr>
<tr>
<td>500 mbar, 3 bar, 16 bar</td>
<td>±0,05 %</td>
<td>±0,125 %</td>
</tr>
</tbody>
</table>

Conditions ambiantes

Température ambiante, de transport et de stockage

- Version standard \(-40 \ldots +80 \degree C (-40 \ldots +176 \degree F)\)
- Version pour applications à oxygène \(-40 \ldots +60 \degree C (-40 \ldots +140 \degree F)\)
- Versions IP 66/IP 68 (1 bar), câble de raccordement PE \(-20 \ldots +60 \degree C (-4 \ldots +140 \degree F)\)
- Versions IP 66/IP 68 (1 bar) et IP 68, câble de raccordement PUR \(-20 \ldots +80 \degree C (-4 \ldots +176 \degree F)\)

\(^{13}\) Pour plages de mesure \(\geq 500 \text{ mbar} \) jusqu’à TD 2 : 1

\(^{14}\) Toutes les indications sont valables pour la plage de température +10 \ldots +60 \degree C (+50 \ldots +140 \degree F).

\(^{15}\) Pour plages de mesure \(\geq 500 \text{ mbar} \) jusqu’à TD 2 : 1

\(^{16}\) Toutes les indications sont valables pour la plage de température +10 \ldots +60 \degree C (+50 \ldots +140 \degree F).

\(^{17}\) Jusqu’à 60 \degree C (140 \degree F).
Conditions de process

Les indications concernant la pression et la température servent d’aperçu. La pression maximale admissible pour le capteur de pression dépend toujours de l’élément le moins résistant à la pression. Ce sont toutefois les indications figurant sur la plaque signalétique qui sont valables.

Limites de températures process

Les indications sont valables pour la version de base ainsi que le côté négatif pour la version avec séparateur simple\(^{18}\)

- Avec cellules de mesure PN 420 limite inférieure de température d’application -10 °C (+14 °F).
- Avec prises de pression plus longues que 100 mm -40 … +120 °C (-40 … +248 °F)
- Avec prises de pression plus longues que 100 mm, raccord process acier C22.8 -40 … +120 °C (-40 … +248 °F)

Les spécifications sont valables pour les séparateurs appropriés

- Séparateur CSS côté impulsion, CSB double -40 … +400 °C (-40 … +752 °F)

Limites de température process selon le matériau du joint d’étanchéité

<table>
<thead>
<tr>
<th>Matériau d’étanchéité</th>
<th>Limites de température</th>
</tr>
</thead>
<tbody>
<tr>
<td>FKM</td>
<td>-20 … +85 °C (-4 … +185 °F)</td>
</tr>
<tr>
<td>FFKM (Kalrez 6375)</td>
<td>-5 … +85 °C (23 … +185 °F)</td>
</tr>
<tr>
<td>EPDM</td>
<td>-40 … +85 °C (-40 … +185 °F)</td>
</tr>
<tr>
<td>PTFE</td>
<td>-40 … +85 °C (-40 … +185 °F)</td>
</tr>
<tr>
<td>NBR</td>
<td>-20 … +85 °C (-4 … +185 °F)</td>
</tr>
<tr>
<td>Cuivre</td>
<td>-40 … +85 °C (-40 … +185 °F)</td>
</tr>
<tr>
<td>Cuivre, pour application à oxygène</td>
<td>-20 … +60 °C (-4 … +140 °F)</td>
</tr>
<tr>
<td>FKM, nettoyé</td>
<td>-10 … +85 °C (+14 … +185 °F)</td>
</tr>
<tr>
<td>FKM, pour application à oxygène</td>
<td>-10 … +60 °C (-4 … +140 °F)</td>
</tr>
<tr>
<td>PTFE, pour application à oxygène</td>
<td>-20 … +60 °C (-4 … +140 °F)</td>
</tr>
</tbody>
</table>

Limites de pression process selon la plage de mesure

<table>
<thead>
<tr>
<th>Plage de mesure nominale</th>
<th>Pression nominale</th>
<th>Surcharge unilatérale</th>
<th>Surcharge bilatérale</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mbar (1 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>240 bar (24000 kPa)</td>
</tr>
<tr>
<td>30 mbar (3 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>240 bar (24000 kPa)</td>
</tr>
<tr>
<td>100 mbar (10 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>240 bar (24000 kPa)</td>
</tr>
<tr>
<td>500 mbar (50 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>240 bar (24000 kPa)</td>
</tr>
<tr>
<td></td>
<td>420 bar (42000 kPa)</td>
<td>420 bar (42000 kPa)</td>
<td>630 bar (63000 kPa)</td>
</tr>
<tr>
<td>3 bar (300 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>240 bar (24000 kPa)</td>
</tr>
<tr>
<td></td>
<td>420 bar (42000 kPa)</td>
<td>420 bar (42000 kPa)</td>
<td>630 bar (63000 kPa)</td>
</tr>
</tbody>
</table>

\(^{18}\) Pour les versions destinées aux applications à oxygène, consultez le chapitre "Applications à oxygène".

78 WIKAMise en service - Capteur de pression différentielle DPT-10
Annex 11

<table>
<thead>
<tr>
<th>Plage de mesure nominale</th>
<th>Pression nominale</th>
<th>Surcharge unilatérale</th>
<th>Surcharge bilatérale</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 bar (1600 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>240 bar (24000 kPa)</td>
</tr>
<tr>
<td></td>
<td>420 bar (42000 kPa)</td>
<td>420 bar (42000 kPa)</td>
<td>630 bar (63000 kPa)</td>
</tr>
<tr>
<td>40 bar (4000 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>Côté (+) : 160 bar (16000 kPa)</td>
<td>240 bar (24000 kPa)</td>
</tr>
<tr>
<td></td>
<td>420 bar (42000 kPa)</td>
<td>Côté (-) : 100 bar (10000 kPa)</td>
<td>630 bar (63000 kPa)</td>
</tr>
</tbody>
</table>

Limites de pression process lorsque le lorsque le matériau du joint d’étanchéité est FFKM (Kalrez 6375)

<table>
<thead>
<tr>
<th>Pression nominale</th>
<th>Surcharge unilatérale</th>
<th>Surcharge bilatérale</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 bar (10000 kPa)</td>
<td>100 bar (10000 kPa)</td>
<td>150 bar (15000 kPa)</td>
</tr>
</tbody>
</table>

Pression du système minimale pour toutes les plages de mesure

Tenue aux vibrations (oscillations mécaniques avec 5 … 100 Hz), selon la version, le matériau et le modèle du boîtier de l’électronique

- Boîtier plastique à chambre unique ou à deux chambres, boîtier aluminium à chambre unique
- Boîtier aluminium à deux chambres, boîtier en acier inoxydable à chambre unique
- Boîtier en acier inoxydable à deux chambres

Tenue aux chocs

Accélération 100 g/6 ms

Caractéristiques électromécaniques - version IP 66/IP 67

Entrée de câble/connecteur

- Boîtier à chambre unique
- 1 x pression, étoupe M20 x 1,5 (ø du câble : 5 … 9 mm), 1 x obturateur M20 x 1,5
 ou :
 - 1 x bouchon fileté 1/2 NPT, 1 x obturateur 1/2 NPT
 ou :
 - 1 x connecteur (suivant la version), 1 x obturateur M20 x 1,5

20) Testée selon EN 60068-2-27.
21) Suivant la version M12 x 1, selon ISO 4400, Harting, 7/8” FF.
Boîtier à deux chambres

- 1 x presse-étoupe M20 x 1,5 (câble : Ø 5 … 9 mm), 1 x obturateur M20 x 1,5 ; connecteur M12 x 1 pour l'unité de réglage et d'affichage externe (en option)
 ou :
- 1 x bouchon fileté ½ NPT, 1 x obturateur ½ NPT, connecteur M12 x 1 pour l'unité de réglage et d'affichage externe (en option)
 ou :
- 1 x connecteur (selon la version), 1 x obturateur M20 x 1,5 ; connecteur M12 x 1 pour l'unité de réglage et d'affichage externe (en option)

Bornes à ressort pour section de conducteur jusqu'à 2,5 mm² (AWG 14)

Module de réglage et d'affichage

<table>
<thead>
<tr>
<th>Alimentation de tension et transmission des données</th>
<th>Par le capteur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affichage</td>
<td>Afficheur LC matrice dot</td>
</tr>
<tr>
<td>Éléments de réglage</td>
<td>4 touches</td>
</tr>
<tr>
<td>Type de protection</td>
<td></td>
</tr>
</tbody>
</table>
 - Non installé | IP 20 |
 - Installé dans le capteur sans couvercle | IP 40 |
| Matériau | |
 - Boîtier | ABS |
 - Hublot | Feuille de polyester |

Tension d'alimentation

<table>
<thead>
<tr>
<th>Tension de service</th>
<th></th>
</tr>
</thead>
</table>
 - Appareil non Ex | 12 ... 36 V DC |
 - Appareil Ex-ia | 12 ... 30 V DC |
 - Appareil Ex-d | 18 ... 36 V DC |

Tension de service avec module de réglage et d'affichage rétroéclairé

Appareil non Ex	20 ... 36 V DC
Appareil Ex-ia	20 ... 30 V DC
Appareil Ex d	20 ... 36 V DC

Ondulation résiduelle tolérée

<table>
<thead>
<tr>
<th>Ondulation résiduelle (Hz)</th>
<th>Tolérance (V)</th>
</tr>
</thead>
</table>
 - < 100 Hz | U_{ss} < 1 V |
 - 100 Hz ... 10 kHz | U_{ss} < 10 mV |

Charge ohmique

Voir diagramme
Fig. 58: Diagramme de tension
1 Charge ohmique HART
2 Limite de tension appareil Ex ia
3 Limite de tension appareil non Ex/appareil Ex-d
4 Tension de service

Mesures de protection électrique

Type de protection
- Boîtier standard IP 66/IP 67
Catégorie de surtensions III
Classe de protection II

Agréments
11 Annexe

11.2 Dimensions

Boîtier en matière plastique

![Diagram of plastic housing variations with integrated adjustment and display module, showing increased height by 9 mm/0.35 in]

1 Version à chambre unique
2 Version à deux chambres

Boîtier en aluminium

![Diagram of aluminum housing variations with integrated adjustment and display module, showing increased height by 9 mm/0.35 in]

1 Version à chambre unique
2 Version à deux chambres

Fig. 59: Variantes de boîtier en protection IP 66/IP 68 (0,2 bar) - avec un module de réglage et d'affichage intégré, la hauteur du boîtier augmente de 9 mm/0.35 in

Fig. 60: Variantes de boîtier en protection IP 66/IP 68 (0,2 bar) - avec un module de réglage et d'affichage intégré, la hauteur du boîtier augmente de 9 mm/0.35 in
Boîtier en aluminium en protection IP 66/IP 68 (1 bar)

Fig. 61: Variantes de boîtier en protection IP 66/IP 68 (1 bar) - avec un module de réglage et d’affichage intégré, la hauteur du boîtier augmente de 9 mm/0.35 in
1 Version à chambre unique
2 Version à deux chambres

Boîtier en acier inoxydable

Fig. 62: Variantes de boîtier en protection IP 66/IP 68 (0,2 bar) - avec un module de réglage et d’affichage intégré, la hauteur du boîtier augmente de 9 mm/0.35 in
1 Version à chambre unique électropolie
2 Version à chambre unique moulage cire-perdue
3 Version à deux chambres moulage cire-perdue
Bride ovale, raccord ¼-18 NPT et/ou RC ¼

Fig. 63: En haut : cellules de mesure 10 mbar et 30 mbar. En bas : cellule de mesure ≥ 100 mbar

<table>
<thead>
<tr>
<th>Version</th>
<th>Raccordement</th>
<th>Fixation</th>
<th>Matériau</th>
<th>Compris à la livraison</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1/4-18 NPT IEC 61518</td>
<td>7/16-20 UNF</td>
<td>acier C 22.8</td>
<td>y compris 2 vis de purge (316L)</td>
</tr>
<tr>
<td>D</td>
<td>1/4-18 NPT IEC 61518</td>
<td>7/16-20 UNF</td>
<td>AISI 316L</td>
<td>y compris 2 vis de purge (316L)</td>
</tr>
<tr>
<td>F</td>
<td>1/4-18 NPT IEC 61518</td>
<td>7/16-20 UNF</td>
<td>Alloy C276</td>
<td>sans vis de purge/vis de fermeture</td>
</tr>
<tr>
<td>U</td>
<td>RC 1/4</td>
<td>7/16-20 UNF</td>
<td>AISI 316L</td>
<td>y compris 2 vis de purge (316L)</td>
</tr>
<tr>
<td>1</td>
<td>1/4-18 NPT IEC 61518</td>
<td>PN 160: M10, PN 420: M12</td>
<td>acier C 22.8</td>
<td>y compris 2 vis de purge (316L)</td>
</tr>
</tbody>
</table>
Annexe

<table>
<thead>
<tr>
<th>Version</th>
<th>Raccordement</th>
<th>Fixation</th>
<th>Matériau</th>
<th>Compris à la livraison</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1/4-18 NPT IEC 61518</td>
<td>PN 160: M10, PN 420: M12</td>
<td>AISI 316L</td>
<td>y compris 2 vis de purge (316L)</td>
</tr>
<tr>
<td>3</td>
<td>1/4-18 NPT IEC 61518</td>
<td>PN 160: M10, PN 420: M12</td>
<td>Alloy C276</td>
<td>sans vis de purge/vis de fermeture</td>
</tr>
</tbody>
</table>

Bride ovale, raccord ¼-18 NPT et/ou RC ¼, avec aération latérale

![Diagram](image)

Fig. 64: Cellules de mesure 10 mbar et 30 mbar.

<table>
<thead>
<tr>
<th>Version</th>
<th>Raccordement</th>
<th>Fixation</th>
<th>Matériau</th>
<th>Compris à la livraison</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1/4-18 NPT IEC 61518</td>
<td>7/16-20 UNF</td>
<td>acier C 22.8</td>
<td>y compris 4 vis de fermeture (AISI 316L) et 2 vis de purge</td>
</tr>
<tr>
<td>E</td>
<td>1/4-18 NPT IEC 61518</td>
<td>7/16-20 UNF</td>
<td>AISI 316L</td>
<td>y compris 4 vis de fermeture (AISI 316L) et 2 vis de purge</td>
</tr>
<tr>
<td>H</td>
<td>1/4-18 NPT IEC 61518</td>
<td>7/16-20 UNF</td>
<td>Alloy C276</td>
<td>sans vis de purge/vis de fermeture</td>
</tr>
<tr>
<td>V</td>
<td>RC 1/4</td>
<td>7/16-20 UNF</td>
<td>AISI 316L</td>
<td>y compris 4 vis de fermeture (AISI 316L) et 2 vis de purge</td>
</tr>
</tbody>
</table>
Bride ovale, préparée pour montage sur séparateur

Fig. 65: À gauche : raccord process DPT-10 préparé pour le raccordement du séparateur. À droite : emplacement du joint en cuivre

1. Raccordement du séparateur
2. Joint en cuivre
3. Membrane à godet
INDEX

A
Applications à oxygène 14

B
Blindage du câble 33

C
Câble de raccordement 32
Compartiment de raccordement 38
Compartiment électronique du boîtier à deux chambres 38
Compartiment électronique et de raccordement 35
Compteur-totalisateur 51
Conditions de process 13
Copier données capteur 52
Correction de position 46
Courbe de linéarisation
– pour débit 50
– pour niveau 50

D
Directive DEEE 70
Disposition de montage 15
Domaine d’application
– Mesure de débit 8
– Mesure de densité 9
– Mesure de niveau 9
– Mesure de pression différentielle 9
– Mesure d’interface 10

E
Élimination 70
Élimination de l’écoulement min. 51
Élimination des défauts 68
Entrée de câble 32

M
Maintenance 68
Manifolds
– Introduction 15
– Manifold 3 voies 16, 17
– Manifold 3 voies avec bride des deux côtés 17
Messages d’erreur 69
Mesure de débit
– Dans des vapeurs 19
– Dans les gaz 18
– dans les liquides 20
Mesure de densité 26

Mesure de niveau
– Dans un réservoir clos 22, 23, 24, 25
– Dans un réservoir ouvert 21, 22
Mesure de pression différentielle
– Dans des gaz et des vapeurs 28
– Dans les installations à vapeur et à condensat 28
– dans les liquides 29
Mesure d’interface 27
Mise en service
– Mesure de débit 59, 60
– Mesure de niveau 62, 63, 64
– Mesure de pression différentielle 65, 66
Montage sur tuyauterie 15

O
Organe déprimogène 13

P
Plaque signalétique 7
Principe de fonctionnement 10
Prises de pression 13

R
Recyclage 70
Réglage
– pour débit 49
– pour densité 48
– pour niveau 47
– pour pression différentielle 46, 47
– Unité 44
Reset 52

S
Schéma de raccordement
– Boîtier à chambre unique 35
– Boîtier à deux chambres 37

T
Tension d’alimentation 32
Les indications de ce manuel concernant la livraison, l'application et les conditions de service des capteurs et systèmes d'exploitation répondent aux connaissances existantes au moment de l'impression.