Цифровой индикатор, модель DI35-M

Цифровой индикатор для монтажа в панель
Содержание

1. Общая информация 6
2. Конструкция и принцип действия 7
 2.1 Обзор 7
 2.2 Описание 8
 2.3 Комплектность поставки 8
3. Безопасность 9
 3.1 Условные обозначения 9
 3.2 Назначение 9
 3.3 Ненадлежащее использование 10
 3.4 Квалификация персонала 10
 3.5 Маркировка, маркировка безопасности 11
4. Транспортировка, упаковка и хранение 12
 4.1 Транспортировка 12
 4.2 Упаковка и хранение 12
5. Пуск 13
 5.1 Требования к точке монтажа 13
 5.2 Монтаж, исполнение для монтажа в панель 13
 5.3 Электрические соединения 14
 5.3.1 Замечания по монтажу 14
 5.3.2 Назначение контактов 15
 5.4 Интерфейсный разъем 16
 5.5 Включение цифрового индикатора 16
 5.6 Примеры подключения 17
6. Эксплуатация 21
 6.1 Функциональная клавиша 21
 6.2 Вход и выход из режима программирования 21
 6.3 Навигация по меню 22
 6.4 Изменение численных значений 22
 6.5 Доступ или очистка значений MIN/MAX 22
7. Описание номеров программ

7.1 Назначение измерительного входа 23
 7.1.1 Входной сигнал .. 23
 7.1.2 НПИ и ВПИ .. 25
 7.1.3 Число знаков после запятой 26
 7.1.4 Регулировка смещения 26
 7.1.5 Сравнительная таблица измерений (только для термопар) ... 27
 7.1.6 Функция TARE .. 27

7.2 Основные настройки .. 28
 7.2.1 Запуск функции усреднения 28
 7.2.2 Период обновления .. 28
 7.2.3 Время измерения .. 29
 7.2.4 Режим индикации ... 29
 7.2.5 Триггер сброса для MIN/MAX 30
 7.2.6 Подавление нулевой точки 31
 7.2.7 Яркость индикатора .. 31

7.3 Настройка аналогового выхода (опция) 31
 7.3.1 НПИ и ВПИ .. 31
 7.3.2 Опорное значение ... 32
 7.3.3 Выходной сигнал ... 32

7.4 Настройка последовательного интерфейса (опция) 33

7.5 Настройка авторизации пользователя 34
 7.5.1 Уровни авторизации .. 34
 7.5.2 Отмена защиты паролем 35

7.6 Настройка коммутирующих выходов 35
 7.6.1 Мигающий индикатор при достижении точек переключения ... 35
 7.6.2 Опорное значение ... 36
 7.6.3 Точки переключения .. 36
 7.6.4 Алгоритм переключения 37

7.7 Линеаризация датчиков .. 42

7.8 Функция сумматора .. 44
 7.8.1 Вычисление .. 44
 7.8.2 Сброс ... 45
 7.8.3 Переключение индикатора на отображение значений сумматора ... 45

7.9 Считывание серийного номера 45

7.10 Сброс на заводские настройки 45
Содержание

8. Неисправности .. 46
9. Обслуживание и очистка .. 48
 9.1 Обслуживание .. 48
 9.2 Очистка .. 48
10. Демонтаж, возврат и утилизация 49
 10.1 Демонтаж, исполнение для монтажа в панель управления 49
 10.2 Возврат ... 49
 10.3 Утилизация .. 49
11. Технические характеристики ... 50
Приложение 1: Обзор номеров программ 56

Декларации соответствия приведены на www.wika.com
1. Общая информация

Цифровой индикатор, описанный в данном руководстве по эксплуатации, разработан и произведен в соответствии с новейшими технологиями. Во время производства все компоненты проходят строгую проверку на качество и соответствие требованиям защиты окружающей среды. Наши системы управления сертифицированы в соответствии с ISO 9001 и ISO 14001.

Данное руководство содержит важную информацию по эксплуатации прибора. Для безопасной работы необходимо соблюдать все указания по технике безопасности и правила эксплуатации.

Соблюдайте соответствующие местные нормы и правила по технике безопасности, а также общие нормы безопасности, действующие для конкретной области применения прибора.

Руководство по эксплуатации является частью комплекта поставки изделия и должно храниться в непосредственной близости от измерительного прибора, в месте, полностью доступном соответствующим специалистам. Передайте данное руководство по эксплуатации следующему оператору или владельцу прибора.

Перед началом использования прибора квалифицированный персонал должен внимательно прочитать данное руководство и понять все его положения.

Необходимо соблюдать условия, указанные в документации поставщика.

Технические характеристики могут быть изменены без предварительного уведомления.

Дополнительная информация:
- Адрес в сети Интернет: www.wika.de / www.wika.com
- Соответствующий типовой лист: AC 80.03
- Консультант по применению: Тел.: +49 9372 132-0
 Факс: +49 9372 132-406
 info@wika.de
2. Конструкция и принцип действия

2.1 Обзор

<table>
<thead>
<tr>
<th>Обозначение</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Клавиша [☼]</td>
</tr>
<tr>
<td>2</td>
<td>Клавиша [▼]</td>
</tr>
<tr>
<td>3</td>
<td>Клавиша [▲]</td>
</tr>
<tr>
<td>4</td>
<td>Клавиша [○]</td>
</tr>
<tr>
<td>5</td>
<td>Индикатор точки переключения</td>
</tr>
<tr>
<td>6</td>
<td>Монтажный элемент с крепежным винтом</td>
</tr>
<tr>
<td>7</td>
<td>7-сегментный индикатор</td>
</tr>
<tr>
<td>8</td>
<td>Таблицка</td>
</tr>
</tbody>
</table>
2. Конструкция и принцип действия

2.2 Описание
Цифровой индикатор модели DI35-M является многофункциональным и очень точным прибором для выполнения различных задач, связанных с измерениями.

Цифровой индикатор модели DI35-M имеет многофункциональный вход с 29 различными конфигурациями входа, которые могут выбираться с помощью клемм и выбора входного сигнала в меню конфигурации прибора. Индикатор может непрерывно отображать значение MIN или MAX. Более того, имеется встроенная функция сумматора.

Кроме того, обе версии обеспечивают возможность калибровки и линеаризации датчиков по 30 точкам. Это позволяет дальнейшую адаптацию индикатора для отображения значений сигналов различных датчиков в зависимости от конкретного применения. К стандартным особенностям относятся источник питания для преобразователя, наличие функций HOLD и TARE для компенсации смещения и дрейфа датчика. Могут регулироваться время выборки и время отображения показаний на индикаторе, а также яркость свечения индикатора. Несанкционированное изменение параметров прибора может быть защищено несколькими пользовательскими уровнями, а также с помощью свободно устанавливаемого кода доступа.

Опционально могут поставляться до четырех свободно конфигурируемых переключающих контактов, аналоговый выходной сигнал и последовательный интерфейс.

Функции
- Аналоговый выход
- Получение значения MIN/MAX
- Функции HOLD и TARE
- Линеаризация входа измеряемого сигнала
- Полупроводниковые коммутирующие выходы (опция)
- Индикатор точки переключения (опция)
- Регулируемые точки переключения (опция)

2.3 Комплектность поставки

- Цифровой индикатор
- Уплотнение
- 2 монтажных элемента
- Руководство по эксплуатации
- Ролики направляющих

Сверху комплектность поставки с товарной накладной.
3. Безопасность

3.1 Условные обозначения

ОПАСНО!
... указывает на опасность, вызванную наличием электропитания. В случае несоблюдения инструкции по технике безопасности существует опасность получения серьезных травм, вплоть до летального исхода.

ВНИМАНИЕ!
... указывает на потенциально опасную ситуацию, которая, если ее не избежать, может привести к серьезным травмам или летальному исходу.

ВНИМАНИЕ!
... указывает на потенциально опасную ситуацию, которая, если ее не предотвратить, может явиться причиной травм, повреждения оборудования или угрозы для окружающей среды.

Информация
... служит для указания на полезные советы, рекомендации и информацию, позволяющую обеспечить эффективную и безаварийную работу.

3.2 Назначение
Цифровой индикатор DI35 предназначен для вычисления и отображения значений, соответствующих сигналам датчиков. Благодаря наличию коммутируемых выходов возможно выполнение простых функций управления.

Цифровой индикатор предназначен только для работы в помещении с уровнем загрязнения 2 и категорией перегрузки по напряжению II.

Используйте цифровой индикатор только в условиях, ограниченных его техническими характеристиками (например, макс. температурой окружающей среды)

→ Предельные значения технических характеристик приведены в разделе 11 “Технические характеристики”.

Данное оборудование по уровню излучения относится к классу B и предназначено для использования в промышленной среде. При эксплуатации в других условиях, например, в жилых или торговых зонах, при некоторых условиях оно может создавать помехи работе другому оборудованию. В таких случаях эксплуатирующая организация должна принять необходимые меры.
3. Безопасность

Прибор разработан и произведен исключительно для применений, описанных в настоящем руководстве, и должен использоваться только соответствующим образом.

Все обязательства производителя аннулируются в случае использования прибора не по назначению.

3.3 Ненадлежащее использование

ВНИМАНИЕ!

Травмы персонала в результате ненадлежащего использования

Ненадлежащее использование прибора может привести к возникновению опасных ситуаций и травмам персонала.

▶ Не допускается внесение изменений в конструкцию прибора.
▶ Не вскрывайте прибор.
▶ Не используйте прибор в опасных зонах.

Под ненадлежащим использованием подразумевается использование прибора непредполагаемым способом или для целей, не предусмотренных производителем.

3.4 Квалификация персонала

ВНИМАНИЕ!

Опасность получения травм при недостаточной квалификации персонала!

Неправильное обращение с прибором может привести к значительным травмам или повреждению оборудования.

▶ Действия, описанные в данном руководстве по эксплуатации, должны выполняться только квалифицированным персоналом, обладающим описанными ниже навыками.

Навыки квалифицированного электротехнического персонала

Под квалифицированным электротехническим персоналом, допущенным эксплуатирующей организацией, понимается персонал, который, основываясь на своей технической подготовке, сведениях о методах измерения и управления, опыте и знаниях нормативных документов, современных стандартов и директивных документов, действующих в конкретной стране, способен выполнять описываемые действия и самостоятельно распознавать потенциальную опасность.
3. Безопасность

3.5 Маркировка, маркировка безопасности

Таблица

<table>
<thead>
<tr>
<th>№</th>
<th>Назначение контактов</th>
<th>Серийный номер</th>
<th>Технические характеристики</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Назначение контактов</td>
<td>Серийный номер</td>
<td>Технические характеристики</td>
</tr>
<tr>
<td>2</td>
<td>Назначение контактов</td>
<td>Серийный номер</td>
<td>Технические характеристики</td>
</tr>
<tr>
<td>3</td>
<td>Назначение контактов</td>
<td>Серийный номер</td>
<td>Технические характеристики</td>
</tr>
</tbody>
</table>

Перед выполнением монтажа и ввода в эксплуатацию внимательно изучите руководство по эксплуатации!
4. Транспортировка, упаковка и хранение

4.1 Транспортировка
Проверьте цифровой индикатор на предмет отсутствия возможных повреждений, которые могли произойти при транспортировке. При обнаружении повреждений следует немедленно составить соответствующий акт и известить транспортную компанию.

ВНИМАНИЕ!
Повреждения в результате неправильной транспортировки
В результате неправильной транспортировки возможно повреждение оборудования.

- При разгрузке упакованного оборудования в процессе доставки и внутренней транспортировки следует соблюдать условия, указанные с помощью обозначений на упаковке.
- Перед выполнением внутренней транспортировки изучите рекомендации, приведенные в разделе 4.2 “Упаковка и хранение”.

4.2 Упаковка и хранение
Не удаляйте упаковку до момента начала монтажа. Сохраняйте упаковочный материал, т.к. он обеспечивает оптимальную защиту при транспортировке (например, при смене места монтажа или при передаче в ремонт).

Допустимые условия хранения:

- Температура хранения: -20 ... +80 °C
- Влажность: 0 ... 75 % относительной влажности (без конденсации)

Избегайте воздействия следующих факторов:

- Прямых солнечных лучей или близости к нагретым объектам
- Механической вибрации, механических ударов (падения на твердую поверхность)
- Попадания сажи, паров, пыли и коррозионных газов

Храните цифровой индикатор в оригинальной упаковке в месте, соответствующем указанным выше требованиям. При отсутствии оригинальной упаковки упакуйте и храните оборудование следующим образом:
1. Заверните прибор в антистатическую пленку.
2. Поместите прибор в тару с противоударным материалом.
5. Пуск

Если оборудование транспортируется из холодных условий в более теплые, образующийся конденсат может стать причиной неисправности оборудования. Перед вводом в эксплуатацию необходимо выдержать паузу, пока оборудование не прогреется до температуры помещения.

5.1 Требования к точке монтажа
- Поблизости не должно быть источников магнитных или электрических полей, например, трансформаторов, радиотелефонов, а также источников электростатических разрядов.
- Поблизости не должно быть сильных источников тепла. Не следует превышать допустимые значения температуры эксплуатации (макс. 50 °C).
- Место установки должно соответствовать классу загрязнения 2.
- Необходимо избегать воздействия прямых солнечных лучей или близости к источникам тепла.
- Необходимо избегать механической вибрации и механических ударов (падения на твердую поверхность)
- Необходимо избегать присутствия сажи, паров, пыли и коррозионных газов.

5.2 Монтаж, версия для монтажа в панель

Рекомендованная монтажная сетка: 120 мм по горизонтали, 96 мм по вертикали
Монтаж цифрового индикатора
1. В любом положении. Установите ролики корпуса на боковые направляющие в соответствующем окне панели.

2. Удалите монтажные элементы.

3. Удалите уплотнитель с цифрового индикатора.

4. Вдвиньте цифровой индикатор в панель управления с лицевой стороны. Убедитесь в правильности установки уплотнителя.

5. Зафиксируйте монтажные элементы и затяните крепежные винты (макс. 0.1 Нм).

5.3 Электрические соединения

5.3.1 Замечания по монтажу
- Источник питания должен иметь категорию II по перегрузке по напряжению.
- Обеспечьте защиту источника питания плавким предохранителем с задержкой срабатывания макс. 0,5 А.
- Для версии с монтажом в панель необходимо предусмотреть подходящий изолирующий прибор.
- Не допускается прокладка сигнальных входных и выходных линий рядом.
- Линии исходящей связи и обратные линии прокладывайте параллельно.
- Гальванически изолированные клеммы должны быть подключены к подходящей точке (например, заземлению или массе установки).
- Для проведения высокоточных измерений при малых измерительных сигналах выводы датчика должны быть свиты и экранированы. Экран должен быть подключен к системе выравнивания потенциалов только с одного конца (например, измерительной “земле”).
- Избегайте электростатических разрядов в зоне клемм.
5.3.2 Назначение контактов

Назначение клемм (верхний клеммный блок)

Коммутирующие выходы

Последовательный интерфейс

Назначение клемм (нижний клеммный блок)

→ Более подробная информация приведена в разделе 11 “Технические характеристики”
5. Пуск

5.4 Интерфейсный разъем

RS-232
Интерфейсные кабели RS-232 должны подключаться 1:1 (TxD к TxD и RxD к RxD).

RS-485
Соединения по интерфейсу RS-485 производятся экранированным кабелем для передачи данных по витой паре. С каждой стороны шины сетевого сегмента должна быть предусмотрена оконечная нагрузка. Это необходимо для обеспечения безопасной передачи данных по шине. С этой целью между линиями B (+) и A (-) включен резистор (120 Ом).

При использовании интерфейса без гальванической развязки, разность потенциалов между интерфейсом и измерительным входом может привести к появлению компенсирующего тока. Данный компенсирующий ток может влиять на измерительные сигналы.

5.5 Включение цифрового индикатора
▶ Подайте напряжение питания
⇒ Выполняется тестирование сегмента. Проверьте исправность всех светодиодов.
⇒ Отобразится тип аппаратного обеспечения и версия ПО.
⇒ Цифровой индикатор готов к эксплуатации.
5. Пуск

5.6 Примеры подключения

Измерение токового сигнала (4...20 мА), 2-проводный преобразователь, напряжение питания 100...240 В пере. тока

<table>
<thead>
<tr>
<th>Вход</th>
<th>Аналоговый выход</th>
<th>Питание преобразователя</th>
<th>Цифровой выход</th>
<th>Напряжение питания</th>
</tr>
</thead>
<tbody>
<tr>
<td>In 1</td>
<td>1</td>
<td>+</td>
<td>10</td>
<td>L</td>
</tr>
<tr>
<td>In 2</td>
<td>2</td>
<td>-</td>
<td>11</td>
<td>N</td>
</tr>
<tr>
<td>In 3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In 4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In 5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In 6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In 7</td>
<td>7</td>
<td>+</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

В1

Измерение сигнала напряжения (5 В или 10 В пост. тока), 3-проводный датчик, напряжение питания 10...40 В пост. тока

<table>
<thead>
<tr>
<th>Вход</th>
<th>Аналоговый выход</th>
<th>Питание преобразователя</th>
<th>Цифровой выход</th>
<th>Напряжение питания</th>
</tr>
</thead>
<tbody>
<tr>
<td>In 1</td>
<td>1</td>
<td>+</td>
<td>10</td>
<td>L</td>
</tr>
<tr>
<td>In 2</td>
<td>2</td>
<td>-</td>
<td>11</td>
<td>N</td>
</tr>
<tr>
<td>In 3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In 4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In 5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In 6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In 7</td>
<td>7</td>
<td>+</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

В1
5. Пуск

Измерение токового сигнала (≤ 2,5 В пост. тока) с питанием преобразователя, 3-проводный датчик, напряжение питания 100 ... 240 В перемен. тока

<table>
<thead>
<tr>
<th>Вход</th>
<th>Аналоговый выход</th>
<th>Питание преобразователя</th>
<th>Цифровой вход</th>
<th>Напряжение питания</th>
</tr>
</thead>
<tbody>
<tr>
<td>In 1</td>
<td>In 2</td>
<td>In 3</td>
<td>In 4</td>
<td>In 5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Измерение сопротивления (например, термометр сопротивления Pt100), 2-проводная схема, напряжение питания 100 ... 240 В перемен. тока

<table>
<thead>
<tr>
<th>Вход</th>
<th>Аналоговый выход</th>
<th>Питание преобразователя</th>
<th>Цифровой вход</th>
<th>Напряжение питания</th>
</tr>
</thead>
<tbody>
<tr>
<td>In 1</td>
<td>In 2</td>
<td>In 3</td>
<td>In 4</td>
<td>In 5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
5. Пуск

Измерение сопротивления (например, термометр сопротивления Pt100), 2-проводная схема, напряжение питания 100 ... 240 В перемен. тока

<table>
<thead>
<tr>
<th>Вход</th>
<th>Аналоговый выход</th>
<th>Питание преобразователя</th>
<th>Цифровой вход</th>
<th>Напряжение питания</th>
</tr>
</thead>
<tbody>
<tr>
<td>In 1</td>
<td>1</td>
<td>+</td>
<td>Din</td>
<td>L</td>
</tr>
<tr>
<td>In 2</td>
<td>2</td>
<td>-</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>In 3</td>
<td>3</td>
<td></td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>In 4</td>
<td>4</td>
<td>+</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>In 5</td>
<td>5</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In 6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In 7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

100 ... 240 В перемен. тока

Измерение сопротивления (например, термометр сопротивления Pt100), 3-проводная схема, напряжение питания 10 ... 24 В пост. тока

<table>
<thead>
<tr>
<th>Вход</th>
<th>Аналоговый выход</th>
<th>Питание преобразователя</th>
<th>Цифровой вход</th>
<th>Напряжение питания</th>
</tr>
</thead>
<tbody>
<tr>
<td>In 1</td>
<td>1</td>
<td>+</td>
<td>Din</td>
<td>L</td>
</tr>
<tr>
<td>In 2</td>
<td>2</td>
<td>-</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>In 3</td>
<td>3</td>
<td></td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>In 4</td>
<td>4</td>
<td>+</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>In 5</td>
<td>5</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In 6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In 7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10 ... 24 В пост. тока
5. Пуск

Измерение сопротивления (например, термометр сопротивления Pt100), 4-проводная схема, напряжение питания 100 ... 240 В перем. тока

<table>
<thead>
<tr>
<th>Вход</th>
<th>Аналоговый выход</th>
<th>Питание преобразователя</th>
<th>Цифровой вход</th>
<th>Напряжение питания</th>
</tr>
</thead>
<tbody>
<tr>
<td>In 1</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>L</td>
</tr>
<tr>
<td>In 2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>N</td>
</tr>
<tr>
<td>In 3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In 4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In 5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In 6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In 7</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

100 ... 240 В перем. тока

Измерение сигнала термопар и цифровой вход, напряжение питания 100 ... 240 В перем. тока

<table>
<thead>
<tr>
<th>Вход</th>
<th>Аналоговый выход</th>
<th>Питание преобразователя</th>
<th>Цифровой вход</th>
<th>Напряжение питания</th>
</tr>
</thead>
<tbody>
<tr>
<td>In 1</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>L</td>
</tr>
<tr>
<td>In 2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>N</td>
</tr>
<tr>
<td>In 3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In 4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In 5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In 6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In 7</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

+ S1

100 ... 240 В перем. тока
6. Эксплуатация

6.1 Функции клавиш

<table>
<thead>
<tr>
<th>Клавиша</th>
<th>Функция</th>
</tr>
</thead>
</table>
| Клавиша [☼] | Доступ к режиму программирования открыт
Нажатие и удержание < 1 с: Изменение положения курсора
Нажатие и удержание > 1 с: Сохранение значений всех параметров |
| Клавиша [☼] + [▼] [▲] | Пролистывание номеров программ (PN)
Нажатие и удержание > 1 с: Автоматический пуск цикла |
| Клавиша [▼] | Нажатие и удержание < 1 с: Выбор или изменение значения параметра |
| Клавиша [▲] | Нажатие и удержание < 1 с: Выбор или изменение значения параметра |
| Клавиша [○] | Многофункциональная клавиша
Выбор функций (например, HOLD или TARE) |

6.2 Вход и выход из режима программирования

Вход в режим программирования

► Нажмите [☼].

⇒ Цифровой индикатор в режиме программирования
⇒ Отображается минимальный доступный номер программы.

→ Доступные номера программ зависят от уровня авторизации, см. раздел 7.6.1 “Уровни авторизации”.

Выход из режима программирования

Если ни одна клавиша не нажата в течение 7 секунд, цифровой индикатор снова переходит в режим отображения.
6. Эксплуатация

6.3 Навигация по меню

6.4 Изменение численных значений

6.5 Доступ или очистка значений MIN/MAX

Доступ с значению MIN
▶ Нажмите [▼].
⇒ Значение MIN отображается в течение 7 с.

Доступ к значению MAX
▶ Нажмите [▲].
⇒ Значение MAX отображается в течение 7 с.

Очистка значений MIN/MAX
▶ Нажмите [▼] + [▲].
⇒ Отобразятся прочерки.
⇒ Значения MIN/MAX удалены.

Значения MIN/MAX не сохраняются при выключении питания прибора.
7. Описание номеров программ

Обзор номеров программ приведен в приложении 1 “Обзор номеров программ”

7.1 Назначение измерительного входа

7.1.1 Входной сигнал

Цифровой индикатор имеет многофункциональный вход, который может использоваться для работы с различными входными сигналами.

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Входной сигнал</td>
<td>Ток</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 = 0 ... 20 мА</td>
</tr>
<tr>
<td></td>
<td></td>
<td>02 = 4 ... 20 мА</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Напряжение</td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 = 0 ... 10 В пост. тока</td>
</tr>
<tr>
<td></td>
<td></td>
<td>04 = 0 ... 5 В пот. тока</td>
</tr>
<tr>
<td></td>
<td></td>
<td>05 = 0 ... 2500 мВ пост. тока</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06 = 0 ... 1250 мВ пост. тока</td>
</tr>
<tr>
<td></td>
<td></td>
<td>07 = 0 ... 600 мВ пост. тока</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08 = 0 ... 300 мВ пост. тока</td>
</tr>
<tr>
<td></td>
<td></td>
<td>09 = 0 ... 150 мВ пост. тока</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 = 0 ... 75 мВ пост. тока</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 = 0 ... 35 мВ пост. тока</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 = 0 ... 18 мВ пост. тока</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Измерение температуры</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 = Pt100 (4-/2-проводная схема)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 = Pt100 (3-проводная схема)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 = Pt200 (4-/2-проводная схема)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 = Pt200 (3-проводная схема)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 = Pt500 (4-/2-проводная схема)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 = Pt500 (3-проводная схема)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19 = Pt1000 (4-/2-проводная схема)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 = Pt1000 (3-проводная схема)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21 = L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22 = J</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23 = K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 = B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 = S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26 = N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27 = E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28 = T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29 = R</td>
</tr>
<tr>
<td>Параметр</td>
<td>Функция</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Входной сигнал</td>
<td></td>
</tr>
</tbody>
</table>

Сопротивление
- \(30 = \leq 100 \text{ Ом} \) (4-/2-проводная схема)
- \(31 = \leq 1 \text{ кОм} \) (4-/2-проводная схема)
- \(32 = \leq 10 \text{ кОм} \) (4-/2-проводная схема)

Калибровка датчика
- \(33 = 0/4 \ldots 20 \text{ мА} \)
- \(34 = -1 \ldots +10 \text{ В пост. тока} \)
- \(35 = -1 \ldots +5 \text{ В пост. тока} \)
- \(36 = -500 \ldots +2500 \text{ мВ пост. тока} \)
- \(37 = -500 \ldots +1250 \text{ мВ пост. тока} \)
- \(38 = -500 \ldots +600 \text{ мВ пост. тока} \)
- \(39 = \pm 300 \text{ мВ пост. тока} \)
- \(40 = \pm 150 \text{ мВ пост. тока} \)
- \(41 = \pm 75 \text{ мВ пост. тока} \)
- \(42 = \pm 35 \text{ мВ пост. тока} \)
- \(43 = \pm 18 \text{ мВ пост. тока} \)
- \(44 = 0 \ldots 5 \text{ мА} \)
- \(45 = 0 \ldots 2 \text{ мА} \)

Параметры 1 ... 29 Используются для стандартных сигналов. К измерительному входу не должен подаваться сигнал. Отображаемые величины могут назначаться вручную.

С помощью параметров 1 ... 12 входной сигнал может быть линеаризован.

→ Информация по назначению отображаемых величин приведена в разделе 7.1.2 “НПИ и ВПИ”

Параметры \(\geq 30 \) Используются для нестандартных входных сигналов. На измерительный вход должен подаваться сигнал и должны быть назначены соответствующие отображаемые величины.

→ Информация о назначении отображаемых величин приведена в разделе 7.1.2 “НПИ и ВПИ”
7. Описание номеров программ

7.1.2 НПИ и ВПИ
С помощью данной пары параметров измерительному сигналу ставятся в соответствие требуемые отображаемые значения.

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ВПИ (верхний предел измерения)</td>
<td>-9999 ... 99999</td>
</tr>
<tr>
<td>2</td>
<td>НПИ (нижний предел измерения)</td>
<td>-9999 ... 99999</td>
</tr>
</tbody>
</table>

Процедура для стандартных сигналов
► Установка соответствующих отображаемых значений.

Процедура для нестандартных входных сигналов
1. Подайте на измерительный вход сигнал, соответствующий ВПИ.
2. Выберите PN1.
3. Задайте отображаемое значение.
4. Нажмите [☼].
 ⇒ Входной сигнал поставлен в соответствие отображаемому значению.
5. Подайте на измерительный вход сигнал, соответствующий НПИ.
6. Выберите PN2.
7. Задайте отображаемое значение.
8. Нажмите [☼].
 ⇒ Входной сигнал поставлен в соответствие отображаемому значению.
 ⇒ Отображаемые значения сконфигурированы.
7. Описание номеров программ

7.1.3 Число знаков после запятой
Указывает количество знаков после запятой, отображаемых на индикаторе. Данный параметр не влияет на масштабирование отображаемой величины.

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Число знаков после запятой</td>
<td>00000 ... 0.0000 (кроме измерения температуры)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Термометры сопротивления (PN0 = 13 ... 20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = 8888,8 °C(°F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = 8888,8 °C(°F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = 8888 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = 8888 °F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = 888,8 °C(-99,9 ... 999,9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 = 888,8 °F(-99,9 ... 999,9)</td>
</tr>
<tr>
<td></td>
<td>Термопара (PN0 = 21 ... 29)</td>
<td>0 = 8888,8 °C(°F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = 8888,8 °C(°F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = 8888 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = 8888 °F</td>
</tr>
<tr>
<td>1)</td>
<td>Единицы измерения не отображаются на индикаторе.</td>
<td></td>
</tr>
</tbody>
</table>

7.1.4 Регулировка смещения
Входной сигнал смещается параллельно на величину смещения.

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Смещение</td>
<td>Измерение аналогового сигнала/сопротивления и калибровка датчика</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(PN0 = 1 ... 12 и 30 ... 45)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-9999 ... 99999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Датчики температуры (PN0 = 13 ... 29)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Диапазон измерения</td>
</tr>
</tbody>
</table>

Данный параметр может изменяться непосредственно с помощью тарировки, если это было сделано нажатием многофункциональной клавиши или через цифровой вход.
7. Описание номеров программ

7.1.5 Сравнительная таблица измерений (только для термопар)
Сравнительная таблица измерений может параметрироваться только для термопар (PN0 = 21 ... 29)

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Сравнительная таблица измерений</td>
<td>0 = неактивна</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = активна</td>
</tr>
</tbody>
</table>

Деактивация может оказаться полезной, когда точка перехода осуществляется при очень стабильном и контролируемом уровне температуры клемм. В этом случае соединение с измерительным прибором может быть выполнено простым медным кабелем.

7.1.6 Функция TARE
Функция TARE устанавливает соответствие отображаемого значения заданной величине тарировки. Разница между уставкой и отображаемым значением сохраняется как величина смещения (PN5).

Функция TARE отменяет ранее запрограммированную величину смещения (PN5). Если предполагается использовать функцию TARE в процессе измерения, смещение должно быть запрограммировано.

Функция TARE активируется с помощью следующих точек PN8.

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Установка значения для тарировки</td>
<td>-9999 ... 99999</td>
</tr>
<tr>
<td>8</td>
<td>Триггер тарировки</td>
<td>00 = нет</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 = Цифровой вход</td>
</tr>
<tr>
<td></td>
<td></td>
<td>02 = Многофункциональная клавиша</td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 = Цифровой вход без клавиши</td>
</tr>
<tr>
<td></td>
<td></td>
<td>04 = Пуск системы</td>
</tr>
<tr>
<td></td>
<td></td>
<td>05 = Комбинация 1 + 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06 = Комбинация 2 + 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>07 = Комбинация 3 + 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>08 = Временно через цифровой вход</td>
</tr>
<tr>
<td></td>
<td></td>
<td>09 = Быстро через цифровой вход</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 = Быстро через многофункциональную клавишу</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 = Быстро через многофункциональную клавишу и цифровой вход</td>
</tr>
</tbody>
</table>
7. Описание номеров программ

7.2 Основные настройки

7.2.1 Запуск функции усреднения
Суммарное время усреднения определяется путем умножения времени измерения (PN14) на заданную величину времени усреднения (PN12). Для того, чтобы узнать текущее значение времени усреднения цифрового индикатора, необходимо соответствующим образом запрограммировать режим отображения (PN15). Это также необходимо учитывать для опционального аналогового выхода, а также для коммутирующих выходов.

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
</table>
| 12 | Величина усреднения | 0 = выключена
 1 ... 100 измеренных значений |

7.2.2 Период обновления
Период обновления определяет как часто обновляются показания индикатора. В случае меняющихся в широких пределах входных сигналах рекомендуется выполнить регулировку периода обновления (период обновления > 1с).

Период обновления воздействует только на отображаемые значения. Воздействие на коммутирующие выходы и другие функции отсутствует.

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Период обновления</td>
<td>0,1 ... 10,0 с (по умолчанию 1 с)</td>
</tr>
</tbody>
</table>
7.2.3 Время измерения
Время измерения определяет, как часто обновляются аналоговые и коммутирующие выходы. В случае меняющихся в широких пределах входных сигналах рекомендуется выполнить регулировку времени измерения (время измерения > 0,2 ... 1 с).

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Время измерения</td>
<td>Ток, напряжение (PN0 = 1 ... 12 или 33 ... 45) 0,02 ... 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Сопротивление (4-/2-проводная схема) 0,04 ... 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Сопротивление (3-проводная схема) 0,06 ... 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Термопара (PN0 = 21 ... 29) 0,04 ... 10</td>
</tr>
</tbody>
</table>

Обновление аналоговых и коммутирующих выходов производится периодически с частотой, задаваемой временем обновления. Если время обновления установлено слишком малым, то при нестабильном входном сигнале аналоговый выход может ступенчато меняться, а коммутирующие выходы будут переключаться слишком быстро. В память MIN/MAX значения записываются в зависимости от заданного времени измерения. Короткое время измерения входного сигнала может использоваться для определения пиковых значений нестабильного входного сигнала.

7.2.4 Режим индикации
Режим индикации определяет, какая величина должна отображаться на цифровом индикаторе.

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Режим индикации</td>
<td>1 = Мгновенное значение</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Значение MIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = Значение MAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = Значение HOLD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 = Текущее среднее</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 = Значение сумматора</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 = Абсолютное значение</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 = Режим триггера</td>
</tr>
</tbody>
</table>
7. Описание номеров программ

<table>
<thead>
<tr>
<th>Режим</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мгновенное значение</td>
<td>Отображается последнее измеренное значение.</td>
</tr>
<tr>
<td>Значение MIN</td>
<td>Отображается минимальное значение с момента последнего сброса MIN. Сброс MIN производится в соответствии с конфигурацией (→ см. раздел 7.2.5 “Триггер сброса для MIN/MAX”).</td>
</tr>
<tr>
<td>Значение MAX</td>
<td>Отображается максимальное значение с момента последнего сброса MAX. Сброс MAX производится в соответствии с конфигурацией (→ см. раздел 7.2.5 “Триггер сброса для MIN/MAX”).</td>
</tr>
<tr>
<td>Текущее среднее</td>
<td>Отображается текущее среднее значение. Суммарное время усреднения равно произведению времени измерения (PN14) и заданного времени усреднения (PN12).</td>
</tr>
<tr>
<td>Значение сумматора</td>
<td>Отображается значение сумматора</td>
</tr>
<tr>
<td>Абсолютное значение</td>
<td>Отображается значение, измеренное с момента подачи напряжения питания, без расчета предварительной тарировки.</td>
</tr>
<tr>
<td>Режим триггера</td>
<td>Мгновенное значение обновляется по переднему фронту через цифровой вход.</td>
</tr>
</tbody>
</table>

7.2.5 Триггер сброса для MIN/MAX

Сброс значения отображается кратковременно, после чего активация цифрового входа или многофункциональной клавиши отображается в виде 5 прочерков (“- - - - -”). Если сброс производится через функцию тарировки, это событие вообще не отображается.

При сбросе сбрасывается только отображаемое в настоящий момент на цифровом индикаторе значение MIN.

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Триггер сброса для MIN/MAX</td>
<td>0 = Без триггера</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Цифровой вход</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Многофункциональная клавиша</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = Цифровой вход или многофункциональная клавиша</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = При тарировке</td>
</tr>
</tbody>
</table>

После выполнения сброса в режиме индикации “MIN/Значение MAX” мгновенное значение будет отображаться до тех пор, пока триггер не сбросится. Это позволяет фиксировать мгновенное значение в течение продолжительного времени.
7. Описание номеров программ

7.2.6 Подавление нулевой точки
Заданный диапазон индикации установлен как 0000. С помощью данной функции устраняются колебания значений нулевой точки.

Пример: Параметр 10 = диапазон индикации -10 ... +10 отображается как 0000.

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Подавление нулевой точки</td>
<td>0 ... 99999</td>
</tr>
</tbody>
</table>

7.2.7 Яркость индикатора

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Яркость индикатора</td>
<td>0 ... 9 (0 = ярко, 9 = тускло)</td>
</tr>
</tbody>
</table>

7.3 Настройка аналогового выхода (опция)
На аналоговом выходе присутствуют измеренные цифровым индикатором значения стандартного сигнала (0 ... 10 В пост. тока, 0 ... 20 мА, 4 ... 20 мА).

7.3.1 НПИ и ВПИ
Любому измерительному входу может быть присвоен аналоговый выход. Выходной сигнал обновляется одновременно с измерительным входом. Период обновления определяется сконфигурированным значением времени измерения. Начальное и конечное значение для аналогового сигнала устанавливается определяемыми пользователем измеренными значениями.

Начальное и конечное значение определяет, при каком отображаемом значении будет достигаться минимальное и максимальное значение выходного сигнала. Отображаемое значение зависит от настроек входного сигнала (→ см. раздел 7.1.1 “Входной сигнал”)

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>ВПИ</td>
<td>-9999 ... 99999</td>
</tr>
<tr>
<td>21</td>
<td>НПИ</td>
<td>-9999 ... 99999</td>
</tr>
</tbody>
</table>
7. Описание номеров программ

7.3.2 Опорное значение
Опорное значение представляет собой значение, полученное через аналоговый выход.

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Опорное значение</td>
<td>0 = Аналоговый выход неактивен</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Мгновенное значение</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Значение MIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = Значение MAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = Значение HOLD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 = Текущее среднее</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 = Значение сумматора</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 = Абсолютное значение</td>
</tr>
</tbody>
</table>

7.3.3 Выходной сигнал

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Выходной сигнал</td>
<td>0 = 0 ... 10 В пост. тока</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = 0 ... 20 мА</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = 4 ... 20 мА</td>
</tr>
</tbody>
</table>

Кроме того, выходной сигнал должен быть установлен с помощью DIP-переключателя сзади прибора.
0 ... 10 В пост. тока = переключатель в правом положении
0/4 ... 20 мА = переключатель в левом положении

Пример
Скорость вращения 0 ... 3000 мин\(^{-1}\) необходимо передать на пульт управления с помощью сигнала 4 ... 20 мA. Датчик скорости вращения подключен к измерительному входу 1.

1. Установите начальное значение на 3000.
2. Установите конечное значение на 0.
3. Установите опорное значение на 1.
4. Установите выходной сигнал на 2.
5. Установите DIP-переключатель в нужное положение.

⇒ Аналоговый выход настроен.
7.4 Настройка последовательного интерфейса (опция)

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>Свойства интерфейса</td>
<td>0 = стандартный режим</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = режим передачи</td>
</tr>
</tbody>
</table>

Свойства интерфейса

<table>
<thead>
<tr>
<th>Свойства интерфейса</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Стандартный режим (режим конфигурирования)</td>
<td>В данном режиме цифровой индикатор не может быть сконфигурирован. Ответ будет передаваться только по запросу. Запрос текущего измеренного значения “A↵”.</td>
</tr>
<tr>
<td>Режим передачи</td>
<td>Измеренные значения передаются периодически. Период соответствует заданному времени измерения.</td>
</tr>
</tbody>
</table>

Отмена режима передачи
Отмена режима передачи производится получением команды “> ↵”, при этом прибор переходит в стандартный режим.

Активация режима передачи
Перезапустите цифровой индикатор или введите команду “S ↵”.

Структура протокола
Отображаемые значения передаются в формате ASCII. Отрицательные значения и десятичные точки могут отображаться на индикаторе или обрабатываться ПЛК. При передаче начальные пробелы опускаются. Величины выходящие за пределы диапазона, передаются в виде прочерков “- - - - - ↵”.

Пример: “0.00 ↵”; “-9.99 ↵”; “999.99 ↵”; “-123.45”; “- - - - - ↵”; “Lbr ↵”

Отображаемые значения могут обрабатываться и храниться на ПК с помощью приложения “терминал”.

Настройки
- Соединение “точка-точка”
- Скорость передачи информации 9600 бод
- 8 битов данных
- без проверки четности
- 1 стоповый бит
7. Описание номеров программ

7.5 Настройка авторизации пользователя

7.5.1 Уровни авторизации
С помощью авторизации пользователя можно ограничить круг настроек, доступных для редактирования пользователем. Авторизация может быть нескольких уровней.

<table>
<thead>
<tr>
<th>Функция</th>
<th>PN</th>
<th>Уровень авторизации</th>
</tr>
</thead>
<tbody>
<tr>
<td>Регулировка яркости индикатора</td>
<td>19</td>
<td>1 2 3 4 5 6 7 8</td>
</tr>
<tr>
<td>Задание кода блокировки</td>
<td>50</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Считывание серийного номера</td>
<td>200</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Изменение точек переключения</td>
<td>61, 71, 81, 91</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Настройка коммутирующего выхода</td>
<td>59 ... 95</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Настройка интерфейса</td>
<td>32 ... 34</td>
<td>✓ ✓ ✓ ✓ - - - -</td>
</tr>
<tr>
<td>Настройка аналогового выхода</td>
<td>20 ... 22</td>
<td>✓ ✓ ✓ ✓ - - - -</td>
</tr>
<tr>
<td>Настройка измерительных входов</td>
<td>0 ... 18</td>
<td>✓ ✓ ✓ ✓ - - - -</td>
</tr>
<tr>
<td>Выполнение линеаризации</td>
<td>100 ... 130</td>
<td>✓ ✓ ✓ ✓ - - - -</td>
</tr>
<tr>
<td>Задание кода сброса</td>
<td>51</td>
<td>✓ - - - - - -</td>
</tr>
<tr>
<td>Изменение уровня авторизации</td>
<td>52</td>
<td>- - - - - - - -</td>
</tr>
</tbody>
</table>

Уровни авторизации могут меняться только с помощью кода сброса, соответствующего коду блокировки (защита паролем). По умолчанию оба параметра установлены как 0000, при этом блокировка программирования не активирована.

Уровень управления выбирается PN53. Уровень простого управления является базовым. Отображаются только номера программ, с помощью которых цифровой индикатор может быть запущен в работу. При этом начальное и конечное значение для передаваемого сигнала автоматически передаются на аналоговый выход. (→ Информация о доступных номерах программ приведена в приложении “Таблица номеров программ”)

Уровень профессионального управления открывает доступ ко всем номерам программ и позволяет выполнять программирование в сложных применениях.

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Режим блокировки</td>
<td>0000 ... 9999</td>
</tr>
<tr>
<td>51</td>
<td>Режим сброса блокировки</td>
<td>0000 ... 9999</td>
</tr>
<tr>
<td>52</td>
<td>Уровень авторизации</td>
<td>0 ... 8</td>
</tr>
<tr>
<td>53</td>
<td>Уровень управления</td>
<td>1 = простой</td>
</tr>
</tbody>
</table>

1 = простой
2 = профессиональный
7. Описание номеров программ

7.5.2 Отмена защиты паролем
Защита паролем отменяется при соответствии кода сброса коду блокировки.

При утере кода блокировки сброс может быть выполнен производителем.

7.6 Настройка коммутирующих выходов
Коммутирующие выходы могут конфигурироваться независимо.

7.6.1 Мигающий индикатор при достижении точек переключения
Превышение точки переключения может отображаться постоянным миганием 7-сегментного индикатора и индикатора точки переключения.

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
</table>
| 59 | Мигающий индикатор | 0 = без мигания
1 = в точке переключения 1
2 = в точке переключения 2
3 = в точке переключения 3
4 = в точке переключения 4
5 = в точке переключения 1 + 2
6 = в точке переключения 3 + 4
7 = в точке переключения 1 + 2 + 3 + 4 |

Считывание статуса переключения
Статус переключения коммутирующих выходов может считываться с индикатора точек переключения.

Индикатор точки переключения
7. Описание номеров программ

7.6.2 Опорное значение
Опорное значение представляет собой величину, на которую реагирует коммутирующий выход.

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Опорное значение, коммутирующий выход 1</td>
<td>0 = Неактивна</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Мгновенное значение</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Значение MIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = Значение MAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = Значение HOLD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 = Текущее среднее</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 = Значение сумматора</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 = Абсолютное значение</td>
</tr>
<tr>
<td>70</td>
<td>Опорное значение, коммутирующий выход 2</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Опорное значение, коммутирующий выход 3</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Опорное значение, коммутирующий выход 4</td>
<td></td>
</tr>
</tbody>
</table>

7.6.3 Точки переключения

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>Точка переключения, коммутирующий выход 1</td>
<td>-9999 ... 99999</td>
</tr>
<tr>
<td>71</td>
<td>Точка переключения, коммутирующий выход 2</td>
<td>-9999 ... 99999</td>
</tr>
<tr>
<td>81</td>
<td>Точка переключения, коммутирующий выход 3</td>
<td>-9999 ... 99999</td>
</tr>
<tr>
<td>91</td>
<td>Точка переключения, коммутирующий выход 4</td>
<td>-9999 ... 99999</td>
</tr>
</tbody>
</table>
7.6.4 Алгоритм переключения

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>Гистерезис, коммутирующий выход 1</td>
<td>1 \ldots 99999</td>
</tr>
<tr>
<td>72</td>
<td>Гистерезис, коммутирующий выход 2</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Гистерезис, коммутирующий выход 3</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Гистерезис, коммутирующий выход 4</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Функция переключения, коммутирующий выход 1</td>
<td>0 = нормально замкнут</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = нормально разомкнут</td>
</tr>
<tr>
<td>73</td>
<td>Функция переключения, коммутирующий выход 2</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Функция переключения, коммутирующий выход 3</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Функция переключения, коммутирующий выход 4</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Задержка переключения коммутирующий выход 1</td>
<td>0 \ldots 10 секунд</td>
</tr>
<tr>
<td>74</td>
<td>Задержка переключения коммутирующий выход 2</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Задержка переключения коммутирующий выход 3</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Задержка переключения коммутирующий выход 4</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Тип задержки, коммутирующий выход 1</td>
<td>0 = Нет</td>
</tr>
<tr>
<td>75</td>
<td>Тип задержки, коммутирующий выход 2</td>
<td>1 = Задержка включения</td>
</tr>
<tr>
<td>85</td>
<td>Тип задержки, коммутирующий выход 3</td>
<td>2 = Задержка выключения</td>
</tr>
<tr>
<td>95</td>
<td>Тип задержки, коммутирующий выход 4</td>
<td>3 = Задержка включения и выключения</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = Подавление через активированный цифровой вход</td>
</tr>
<tr>
<td>67</td>
<td>Подтверждение точки переключения, коммутирующий выход 1</td>
<td>0 = Без блокировки</td>
</tr>
<tr>
<td>77</td>
<td>Подтверждение точки переключения, коммутирующий выход 1</td>
<td>1 = Блокировка выключения с помощью многофункциональной клавиши</td>
</tr>
<tr>
<td>87</td>
<td>Подтверждение точки переключения, коммутирующий выход 1</td>
<td>2 = Блокировка выключения через цифровой вход</td>
</tr>
<tr>
<td>97</td>
<td>Подтверждение точки переключения, коммутирующий выход 1</td>
<td>3 = Блокировка выключения с помощью многофункциональной клавиши или через цифровой вход</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = Без блокировки</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 = Блокировка включения с помощью многофункциональной клавиши</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 = Блокировка включения через цифровой вход</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 = Блокировка включения с помощью многофункциональной клавиши или через внешний вход</td>
</tr>
</tbody>
</table>
Нормально разомкнутый выход
При значении сигнала ниже точки переключения коммутирующий выход включен. При достижении точки переключения коммутирующий выход выключается.

Коммутирующий выход выключен только при достижении точки переключения, меньшей значения гистерезиса.

Измеренное значение

Точка переключения

Гистерезис

Время

Статус переключения

вкл

выкл

Время

09/2018 RU based on 05/2017 EN
7. Описание номеров программ

Нормально замкнутый выход
При значении сигнала выше точки переключения коммутирующий выход включен. При достижении точки переключения коммутирующий выход выключается.

Коммутирующий выход включен только при достижении точки переключения, меньшей значения гистерезиса.

<table>
<thead>
<tr>
<th>Измеренное значение</th>
<th>Статус переключения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Точка переключения</td>
<td>Вкл</td>
</tr>
<tr>
<td></td>
<td>выкл</td>
</tr>
<tr>
<td>Гистерезис</td>
<td>Время</td>
</tr>
<tr>
<td>Время</td>
<td></td>
</tr>
</tbody>
</table>

09/2018 RU based on 05/2017 EN
7. Описание номеров программ

Задержка включения
Коммутирующий выход включен только когда уровень входного сигнала остается выше точки переключения как минимум на время задержки переключения. Данная функция предотвращает нежелательное переключение коммутирующего выхода в результате кратковременных колебаний входного сигнала.

Измеренное значение

Статус переключения
Задержка выключения

Коммутирующий выход выключен всегда, когда уровень входного сигнала ниже значения точки переключения как минимум на время задержки переключения. Данная функция предотвращает нежелательное переключение коммутирующего выхода в результате кратковременных колебаний входного сигнала.

Измеренное значение

<table>
<thead>
<tr>
<th>Измеренное значение</th>
<th>Точке переключения</th>
<th>Время</th>
</tr>
</thead>
<tbody>
<tr>
<td>Точка переключения</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Время</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Статус переключения

<table>
<thead>
<tr>
<th>Статус переключения</th>
<th>ВКЛ</th>
<th>ВЫКЛ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Время</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Задержка переключения</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. Описание номеров программ

7.7 Линеаризация датчиков
Нелинейные датчики могут линеаризовываться по максимум 30 интерполяционным точкам на один измерительный вход.
В каждой интерполяционной точке входному сигналу присваивается отображаемое значение.
Аналоговый сигнал также линеаризуется, т.к. он пропорционален отображаемым значениям.

Каждая последующая точка интерполяции должна соответствовать более высокому значению входного сигнала. Соответствующие отображаемые значения могут назначаться произвольно.

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Количество точек интерполяции</td>
<td>0 ... 30</td>
</tr>
<tr>
<td>101 ... 130</td>
<td>Отображаемое значение для точки интерполяции</td>
<td>-9999 ... 99999</td>
</tr>
</tbody>
</table>

Процедура
1. Задайте количество точек интерполяции с помощью PN 100/PN 140.
2. Подайте к измерительному входу сигнал, соответствующий первой точке интерполяции, PN 101/PN 141.
3. Установите требуемое отображаемое значение с помощью PN 101/PN 141.
 ⇒ Входной сигнал соответствует отображаемому значению.
4. Повторите шаги 2 + 3 для остальных точек интерполяции.
 ⇒ Входной сигнал линеаризован.
7. Описание номеров программ

Пример
Линеаризация преобразователя давления в диапазоне 0 ... 100 мбар с выходным сигналом 0 ... 20 мА.
- Программирование с помощью 5 точек интерполяции.
- Нелинейный диапазон 0 ... 75 мбар.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PN 2</td>
<td>0</td>
<td>0,5</td>
<td>2,5</td>
<td>0,0</td>
</tr>
<tr>
<td>PN 101</td>
<td>15</td>
<td>3,3</td>
<td>16,5</td>
<td>15,0</td>
</tr>
<tr>
<td>PN 102</td>
<td>30</td>
<td>6,2</td>
<td>31,0</td>
<td>30,0</td>
</tr>
<tr>
<td>PN 103</td>
<td>40</td>
<td>9,2</td>
<td>46</td>
<td>40,0</td>
</tr>
<tr>
<td>PN 104</td>
<td>60</td>
<td>11,4</td>
<td>57</td>
<td>60,0</td>
</tr>
<tr>
<td>PN 105</td>
<td>75</td>
<td>14,7</td>
<td>73,5</td>
<td>75,0</td>
</tr>
<tr>
<td>PN 1</td>
<td>100</td>
<td>20</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Для PN 101 это означает:
При давлении 15 мбар преобразователь обеспечивает выходной сигнал 3,3 мА вместо 3,0 мА. Поэтому до коррекции индикатор показывает 16,5 мбара. Данное значение регулируется до 15,0 мбар с помощью точки интерполяции.
7. Описание номеров программ

7.8 Функция сумматора

Функция сумматора позволяет суммировать результаты измерения, которые определяются как результат программных вычислений. Результаты измерений суммируются, пока не будет выполнен сброс.

7.8.1 Вычисление

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
</table>
| 180 | Функция сумматора | 0 = Выключена
1 = Функция сумматора без постоянного хранения (сброс при пуске)
2 = Функция сумматора с постоянным хранением |
| 181 | Временной базис отображаемого значения | 0 = секунда
1 = минута
2 = час |
| 182 | Коэффициент, кратный 10 | 0 = 1 ... 6 = 1000000 |
| 183 | Положение десятичной точки | 00000 ... 0,0000 |

Для расчета значения сумматора особенно важен временной базис и единица измерения. Расход определяется как объем в единицу времени, а скорость - как расстояние за единицу времени. Значение сумматора суммируется благодаря параметризации временного базиса (PN181).

Пример

Датчик измеряет расход 1200 л/ч; при времени измерения 1 с он может суммировать только 3600-ю часть подсчитанных литров, что в данном случае составит, приблизительно, 0,333 литра за один цикл измерения. Несмотря на столь малую величину, значение сумматора может суммироваться до очень большой величины в течение года. В данном примере это равно, приблизительно, 10 512 000 литров в год.

В данном случае полезна индикация в кубических метрах. Для этого необходимо задать коэффициент - в нашем примере PN182 = 3 (10⁻³). С его помощью значение в литрах может быть преобразовано в кубические метры.

Если требуется знать расход только за месяц, можно добавить десятичную точку для отображения в кубических метрах в параметре PN183.

Если параметрировать коэффициент PN182 = 2 и положение десятичной точки PN183 = 1, то в конце месяца будет отображаться величина 864,0 кубических метров.
7. Описание номеров программ

7.8.2 Сброс

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>184</td>
<td>Считываемое значение, начальное значение</td>
<td>0 ... 99999</td>
</tr>
<tr>
<td>185</td>
<td>Триггер сброса</td>
<td>0 = Без триггера
1 = Многофункциональная клавиша
2 = Цифровой вход
3 = Многофункциональная клавиша или цифровой вход
4 = [^{\uparrow}] или [^{\downarrow}] при отображении значения сумматора</td>
</tr>
</tbody>
</table>

7.8.3 Переключение индикатора на отображение значений сумматора

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>186</td>
<td>Триггер изменения показаний индикатора</td>
<td>0 = Без триггера
1 = Многофункциональная клавиша
2 = Цифровой вход</td>
</tr>
</tbody>
</table>

7.9 Считывание серийного номера

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>Серийный номер</td>
<td>0 ... 99999</td>
</tr>
</tbody>
</table>

7.10 Восстановление заводских настроек

Заводские настройки могут восстанавливаться только при условии снятия блокировки программирования параметром PN 50, открывающей доступ ко всем PN или когда отображается надпись HELP. Все сделанные изменения будут утеряны.

1. Отключите напряжение питания.
2. Нажмите многофункциональную клавишу.
3. Подайте напряжение питания и удерживайте многофункциональную клавишу в течение 2 с.
⇒ Заводские настройки восстановлены.
8. Неисправности

ВНИМАНИЕ!
Травмы персонала, повреждение оборудования и угроза окружающей среде

Если неисправности не могут быть устранены указанными выше способами, следует немедленно прекратить эксплуатацию прибора.

- Убедитесь в том, что на прибор не подается давление или управляющий сигнал и примите меры, исключающие случайный пуск оборудования.
- Свяжитесь с производителем.
- При необходимости возврата следуйте рекомендациям, приведенным в разделе 10.2 “Возврат”.

<table>
<thead>
<tr>
<th>Неисправности</th>
<th>Причины</th>
<th>Корректирующие действия</th>
</tr>
</thead>
<tbody>
<tr>
<td>Прибор постоянно показывает выход за верхний предел измерения</td>
<td>На одном из измерительных входов постоянно присутствует сигнал измерения очень высокого уровня</td>
<td>Проверьте схему измерения</td>
</tr>
<tr>
<td></td>
<td>При использовании измерительного входа с сигналом напряжения низкого уровня имеется соединение только с одного конца или обрыв входа</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Не все активированные точки интерполяции параметрированы</td>
<td>Проверьте соответствующий параметр</td>
</tr>
<tr>
<td></td>
<td>Арифметическая сумма выводит за пределы диапазона</td>
<td></td>
</tr>
<tr>
<td>Прибор постоянно показывает выход за нижний предел измерения</td>
<td>На одном из измерительных входов постоянно присутствует сигнал измерения очень низкого уровня</td>
<td>Проверьте схему измерения</td>
</tr>
<tr>
<td></td>
<td>При использовании измерительного входа с сигналом напряжения низкого уровня имеется соединение только с одного конца или обрыв входа</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Не все активированные точки интерполяции параметрированы</td>
<td>Проверьте соответствующий параметр</td>
</tr>
<tr>
<td></td>
<td>Арифметическая сумма выводит за пределы диапазона</td>
<td></td>
</tr>
<tr>
<td>На индикаторе прибора отображается надпись “HELP”</td>
<td>Ошибка конфигурирования в памяти</td>
<td>Восстановите заводские настройки и снова сконфигурируйте прибор</td>
</tr>
</tbody>
</table>
8. Неисправности

<table>
<thead>
<tr>
<th>Неисправности</th>
<th>Причины</th>
<th>Корректирующие действия</th>
</tr>
</thead>
<tbody>
<tr>
<td>Отображаемые значения скачкообразно изменяются в широком диапазоне</td>
<td>При делении измеренное значение делителя слишком мало</td>
<td>Проверьте схему измерения</td>
</tr>
<tr>
<td>Недоступны номера программ</td>
<td>Отказ в доступе при авторизации пользователя</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Заданный тип датчика предотвращает требуемый номер программы от параметризации</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Аналоговый выход является опциональным. Если он отсутствует, номера программ отображаются серым цветом</td>
<td></td>
</tr>
<tr>
<td>На индикаторе прибора отображается надпись “Err1”</td>
<td>Свяжитесь с производителем</td>
<td></td>
</tr>
<tr>
<td>Цифровой вход не отвечает</td>
<td>Измерьте входной ток цифрового входа. Он должен быть в диапазоне 1 ... 3 мА</td>
<td></td>
</tr>
</tbody>
</table>

Иллюстрация выхода за верхний предел диапазона

![Иллюстрация выхода за верхний предел диапазона](image1)

Иллюстрация выхода за нижний предел измерения

![Иллюстрация выхода за нижний предел измерения](image2)
9. Обслуживание и очистка

9.1 Обслуживание
Цифровой индикатор не требует технического обслуживания. Ремонт должен выполняться только производителем.

9.2 Очистка

ОПАСНО!
Опасность поражения электрическим током
При контакте с токоведущими частями существует опасность летального исхода.
▶ Очистку корпуса и контактов производите при отключенном электропитании.

ВНИМАНИЕ!
Недопустимые моющие средства
Очистка с помощью недопустимых моющих средств может повредить прибор и его табличку
▶ Не используйте агрессивные моющие средства.
▶ Не используйте твердые и острые предметы.
▶ Не используйте абразивные ткани или губки.

1. Отключите цифровой индикатор от источника питания.
2. Протрите поверхность прибора мягкой, влажной ветошью
10. Демонтаж, возврат и утилизация

10.1 Демонтаж, исполнение для монтажа в панель управления

1. Отключите цифровой индикатор от источника питания.
2. Отключите электрические соединения.
3. Удалите монтажные элементы.
4. Вытяните цифровой индикатор из панели управления.

10.2 Возврат

Перед отгрузкой прибора тщательно изучите следующую информацию:
Любое оборудование, отгружаемое в адрес WIKA, должно быть очищено от любых опасных веществ (кислот, щелочей, растворов и т.п.)

При возврате прибора используйте оригинальную или подходящую транспортную упаковку.

Информация по возврату оборудования приведена на веб-сайте в разделе “Сервис”.

10.3 Утилизация

Нарушение правил утилизации может нанести ущерб окружающей среде. Утилизация компонентов прибора и упаковочных материалов должна производиться способом, соответствующим местным нормам и правилам.
11. Технические характеристики

<table>
<thead>
<tr>
<th>Технические характеристики</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Цифровой индикатор</td>
<td></td>
</tr>
<tr>
<td>Тип</td>
<td>7-сегментный светодиодный, красный, 5-разрядный, яркость регулируется по 10 градациям</td>
</tr>
<tr>
<td>Размер символов</td>
<td>14 мм</td>
</tr>
<tr>
<td>Диапазон индикации</td>
<td>-9999 ... 99999</td>
</tr>
<tr>
<td>Скорость отображения</td>
<td>0,1 ... 10,0 секунд</td>
</tr>
<tr>
<td>Память</td>
<td>ЭСППЗУ (память параметров), срок хранения данных > 100 лет</td>
</tr>
<tr>
<td>Входы</td>
<td></td>
</tr>
<tr>
<td>Входы</td>
<td>1 х многофункциональный вход</td>
</tr>
<tr>
<td>Цифровой вход</td>
<td>< 2,4 В выкл, > 10 В вкл, макс. 30 В пост. тока, Ri приблизит. 5 кОм</td>
</tr>
<tr>
<td>Входные сигналы</td>
<td>См. таблицы “Погрешность/погрешность измерения входных сигналов”</td>
</tr>
<tr>
<td>Конфигурирование входов</td>
<td>Выбирается путем подключения клемм и программирования через меню</td>
</tr>
<tr>
<td>Погрешность</td>
<td>См. таблицы “Погрешность/погрешность измерения входных сигналов”</td>
</tr>
<tr>
<td>Влияние температуры</td>
<td>50 ppm/K, при температуре окружающей среды T_о < 20 °C или T_о > 40 °C</td>
</tr>
<tr>
<td>Принцип измерения</td>
<td>Сигма/дельта</td>
</tr>
<tr>
<td>Разрешение</td>
<td>24 бит (время измерения 1 секунда)</td>
</tr>
<tr>
<td>Время измерения</td>
<td>0,02 ... 10,0 с</td>
</tr>
<tr>
<td>Питание преобразователя</td>
<td>24 В пост. тока, макс. 50 мА, с гальванической развязкой</td>
</tr>
<tr>
<td>Аналоговый выход (опция)</td>
<td></td>
</tr>
<tr>
<td>Число и тип</td>
<td>1 аналоговый выход (с гальванической развязкой)</td>
</tr>
<tr>
<td>Выходной сигнал</td>
<td>4 ... 20 мА (12-битный), нагрузка ≤ 500 Ом 0 ... 20 мА (12-битный), нагрузка ≤ 500 Ом 0 ... 10 В пост. тока (12-битный), нагрузка ≥ 100 кОм</td>
</tr>
</tbody>
</table>
Технические характеристики

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Погрешность</td>
<td>0,1 % в диапазоне 20 ... 40 °C 50 ppm/K сверх температурной погрешности</td>
</tr>
<tr>
<td>Внутреннее сопротивление</td>
<td>100 Ом (по измерительному входу 0 ... 10 В пост. тока)</td>
</tr>
<tr>
<td>Коммутирующий выход (опция)</td>
<td></td>
</tr>
<tr>
<td>Количество и тип</td>
<td>2 или 4 переключающих контакта (реле), свободно программируемые</td>
</tr>
<tr>
<td>Нагрузка</td>
<td>250 В перем. тока, 5 А (резистивная нагрузка) 30 В пост. тока, 5 А (резистивная нагрузка)</td>
</tr>
<tr>
<td>Число циклов переключения</td>
<td>0,5 $\cdot 10^5$ при макс. нагрузке контактов 5 $\cdot 10^6$ механическая</td>
</tr>
<tr>
<td>Изоляция</td>
<td>Изоляция в соответствии с DIN EN 50178 Параметры в соответствии с DIN EN 60255</td>
</tr>
<tr>
<td>Источник питания</td>
<td></td>
</tr>
<tr>
<td>Напряжение питания</td>
<td>См. табличку прибора Источник питания с гальванической развязкой 100 ... 240 В перем. тока, 50/60 Гц, 100 ... 240 В пост. тока 10...40 В пост. тока, 18 ... 30 В перем. тока, 50/60 Гц Категория защиты от перегрузки по напряжению II</td>
</tr>
<tr>
<td>Потребляемая мощность</td>
<td>Макс. 15 ВА</td>
</tr>
<tr>
<td>Электрические соединения</td>
<td>Съемный клеммный блок Сечение проводников до 2,5 мм²</td>
</tr>
<tr>
<td>Последовательный интерфейс (опция)</td>
<td></td>
</tr>
<tr>
<td>Интерфейс</td>
<td>См. табличку прибора ■ RS-232 (без гальванической развязки) ■ RS-232 (с гальванической развязкой) ■ RS-485 (без гальванической развязки, только для соединения "точка-точка") ■ RS-485 (с гальванической развязкой, только для соединения "точка-точка")</td>
</tr>
<tr>
<td>Протокол</td>
<td>ASCII по спецификации заказчика</td>
</tr>
<tr>
<td>Скорость передачи информации</td>
<td>9600 бод, без проверки четности, 8 битов данных, 1 стоповый бит</td>
</tr>
<tr>
<td>Длина кабеля</td>
<td>RS-232: макс. 3 м RS-485: макс. 1000 м</td>
</tr>
<tr>
<td>Норпус</td>
<td></td>
</tr>
<tr>
<td>Материал</td>
<td>Поликарбонат со стекловолокном, черный цвет</td>
</tr>
<tr>
<td>Пылевлагозащита</td>
<td>Спереди: IP65, сзади: IP00 (по МЭК 60529)</td>
</tr>
</tbody>
</table>
11. Технические характеристики

<table>
<thead>
<tr>
<th>Масса</th>
<th>приблиз. 350 г</th>
</tr>
</thead>
<tbody>
<tr>
<td>Рекомендованная монтажная сетка</td>
<td>120 мм по горизонтали, 96 мм по вертикали</td>
</tr>
<tr>
<td>Монтаж</td>
<td>Подвижные монтажные элементы, фиксируемые винтами, для стенок толщиной до 15 мм</td>
</tr>
</tbody>
</table>

Условия эксплуатации

<table>
<thead>
<tr>
<th>Допустимая температура окружающей среды</th>
<th>Эксплуатация: 0 ... 50 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Хранение: -20 ... +80 °C</td>
</tr>
<tr>
<td>Влажность</td>
<td>0 ... 75 % отн. влажности без конденсации</td>
</tr>
</tbody>
</table>

Требования к точке монтажа

- Степень загрязнения 2
- Отсутствие воздействия прямых солнечных лучей или близости к источникам тепла
- Отсутствие механической вибрации, механических ударов (падения на твердую поверхность)
- Отсутствие сажи, паров, пыли или коррозионных газов

Погрешность/погрешность измерения входных сигналов

Входы с заводской калибровкой

<table>
<thead>
<tr>
<th>Входные сигналы</th>
<th>Диапазон измерения</th>
<th>Погрешность измерения в % от диапазона измерения 1)</th>
<th>Минимальное время измерения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Токовые сигналы</td>
<td>0 ... 20 мA</td>
<td>≤ ±0,02 % ±1 разряд</td>
<td>0,02 с</td>
</tr>
<tr>
<td></td>
<td>4 ... 20 мA</td>
<td>≤ ±0,02 % ±1 разряд</td>
<td></td>
</tr>
<tr>
<td>Сигналы напряжения</td>
<td>0 ... 18 мВ пост. тока</td>
<td>≤ ±0,06 % ±1 разряд</td>
<td>0,02 с</td>
</tr>
<tr>
<td></td>
<td>0 ... 35 мВ пост. тока</td>
<td>≤ ±0,06 % ±1 разряд</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 ... 75 мВ пост. тока</td>
<td>≤ ±0,04 % ±1 разряд</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 ... 150 мВ пост. тока</td>
<td>≤ ±0,03 % ±1 разряд</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 ... 300 мВ пост. тока</td>
<td>≤ ±0,03 % ±1 разряд</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 ... 600 мВ пост. тока</td>
<td>≤ ±0,03 % ±1 разряд</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 ... 1250 мВ пост. тока</td>
<td>≤ ±0,03 % ±1 разряд</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 ... 2500 мВ пост. тока</td>
<td>≤ ±0,03 % ±1 разряд</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 ... 5 В пост. тока</td>
<td>≤ ±0,02 % ±1 разряд</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 ... 10 В пост. тока</td>
<td>≤ ±0,01 % ±1 разряд</td>
<td></td>
</tr>
</tbody>
</table>
11. Технические характеристики

<table>
<thead>
<tr>
<th>Входные сигналы</th>
<th>Диапазон измерения</th>
<th>Погрешность измерения в % от диапазона измерения</th>
<th>Минимальное время измерения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Термопары</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Тип B, PtRh-PtRh</td>
<td>-100 ... +1810 °C</td>
<td>≤ ±0,10 % ±1 разряд</td>
<td>0,04 с</td>
</tr>
<tr>
<td>Тип E, NiCr-CuNi</td>
<td>-260 ... +1000 °C</td>
<td>≤ ±0,06 % ±1 разряд</td>
<td></td>
</tr>
<tr>
<td>Тип J, Fe-CuNi</td>
<td>-210 ... +1200 °C</td>
<td>≤ ±0,05 % ±1 разряд</td>
<td></td>
</tr>
<tr>
<td>Тип K, NiCr-Ni</td>
<td>-250 ... +1271 °C</td>
<td>≤ ±0,05 % ±1 разряд</td>
<td></td>
</tr>
<tr>
<td>Тип L, Fe-CuNi</td>
<td>-200 ... +900 °C</td>
<td>≤ ±0,06 % ±1 разряд</td>
<td></td>
</tr>
<tr>
<td>Тип N, NiCrSi-NiSi</td>
<td>-250 ... +1300 °C</td>
<td>≤ ±0,06 % ±1 разряд</td>
<td></td>
</tr>
<tr>
<td>Тип R, PtRh-Pt</td>
<td>0 ... 1760 °C</td>
<td>≤ ±0,07 % ±1 разряд</td>
<td></td>
</tr>
<tr>
<td>Тип S, PtRh-Pt</td>
<td>0 ... 1760 °C</td>
<td>≤ ±0,06 % ±1 разряд</td>
<td></td>
</tr>
<tr>
<td>Тип T, Cu-CuNi</td>
<td>-240 ... +400 °C</td>
<td>≤ ±0,07 % ±1 разряд</td>
<td></td>
</tr>
</tbody>
</table>

Термометр сопротивления 2)*

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt100 (2-/4-проводный)</td>
<td>-200 ... +850 °C</td>
<td>≤ ±0,04 % ±1 разряд</td>
<td>0,04 с</td>
</tr>
<tr>
<td>Pt100 (3-проводный)</td>
<td>-200 ... +850 °C</td>
<td>≤ ±0,04 % ±1 разряд</td>
<td>0,06 с</td>
</tr>
<tr>
<td>Pt200 (2-/4-проводный)</td>
<td>-200 ... +850 °C</td>
<td>≤ ±0,04 % ±1 разряд</td>
<td>0,04 с</td>
</tr>
<tr>
<td>Pt200 (3-проводный)</td>
<td>-200 ... +850 °C</td>
<td>≤ ±0,04 % ±1 разряд</td>
<td>0,06 с</td>
</tr>
<tr>
<td>Pt500 (2-/4-проводный)</td>
<td>-200 ... +850 °C</td>
<td>≤ ±0,04 % ±1 разряд</td>
<td>0,04 с</td>
</tr>
<tr>
<td>Pt500 (3-проводный)</td>
<td>-200 ... +850 °C</td>
<td>≤ ±0,04 % ±1 разряд</td>
<td>0,06 с</td>
</tr>
<tr>
<td>Pt1000 (2-/4-проводный)</td>
<td>-200 ... +850 °C</td>
<td>≤ ±0,04 % ±1 разряд</td>
<td>0,06 с</td>
</tr>
<tr>
<td>Pt1000 (3-проводный)</td>
<td>-200 ... +850 °C</td>
<td>≤ ±0,04 % ±1 разряд</td>
<td>0,06 с</td>
</tr>
</tbody>
</table>

1) Указанная погрешность измерения применима при нормальной температуре окружающей среды 20 ... 40 °C и времени измерения 1 секунда.

2) Параметры для Pt100 3-/4-проводной схемы соединения применимы при максимальном сопротивлении выводов 10 Ом.
11. Технические характеристики

Входы для калибровки датчиков

<table>
<thead>
<tr>
<th>Входные сигналы</th>
<th>Диапазон измерения</th>
<th>Погрешность измерения в % от диапазона измерения</th>
<th>Минимальное время измерения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Токовые сигналы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ... 2 mA</td>
<td>≤ ±0,02 % ±1 разряд</td>
<td>0,02 c</td>
<td></td>
</tr>
<tr>
<td>0 ... 5 mA</td>
<td>≤ ±0,02 % ±1 разряд</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ... 20 mA</td>
<td>≤ ±0,02 % ±1 разряд</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 ... 20 mA</td>
<td>≤ ±0,02 % ±1 разряд</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сигналы напряжения</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-18 ... +18 мВ пост. тока</td>
<td>≤ ±0,06 % ±1 разряд</td>
<td>0,02 c</td>
<td></td>
</tr>
<tr>
<td>-35 ... +35 мВ пост. тока</td>
<td>≤ ±0,06 % ±1 разряд</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-75 ... +75 мВ пост. тока</td>
<td>≤ ±0,04 % ±1 разряд</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-150 ... +150 мВ пост. тока</td>
<td>≤ ±0,03 % ±1 разряд</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-300 ... +300 мВ пост. тока</td>
<td>≤ ±0,03 % ±1 разряд</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-500 ... +600 мВ пост. тока</td>
<td>≤ ±0,03 % ±1 разряд</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-500 ... +1250 мВ пост. тока</td>
<td>≤ ±0,03 % ±1 разряд</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-500 ... +2500 мВ пост. тока</td>
<td>≤ ±0,03 % ±1 разряд</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 ... +5 В пост. тока</td>
<td>≤ ±0,02 % ±1 разряд</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 ... +10 В пост. тока</td>
<td>≤ ±0,01 % ±1 разряд</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сопротивление (2-, 3- или 4-проводная схема)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Ом ... 100 Ом</td>
<td>≤ ±0,04 % ±1 разряд</td>
<td>0,04 c</td>
<td></td>
</tr>
<tr>
<td>0 Ом ... 1 кОм</td>
<td>≤ ±0,04 % ±1 разряд</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Ом ... 10 кОм</td>
<td>≤ ±0,04 % ±1 разряд</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Указанная погрешность измерения применима при нормальной температуре окружающей среды 20 ... 40 °C и времени измерения 1 секунда.
11. Технические характеристики

Размеры в мм
Приложение 1: Обзор номеров программ

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
<th>Заводская настройка</th>
<th>Уровень авторизации</th>
<th>Уровень управления</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Измерительный вход</td>
<td>Ток</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 = 0 ... 20 мА</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>02 = 4 ... 20 мА</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Напряжение</td>
<td>03 = 0 ... 10 В пост. тока</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>04 = 0 ... 5 В пост. тока</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>05 = 0 ... 2500 мВ пост. тока</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>06 = 0 ... 1250 мВ пост. тока</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>07 = 0 ... 600 мВ пост. тока</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>08 = 0 ... 300 мВ пост. тока</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>09 = 0 ... 150 мВ пост. тока</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 = 0 ... 75 мВ пост. тока</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 = 0 ... 35 мВ пост. тока</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 = 0 ... 18 мВ пост. тока</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Измерение температуры</td>
<td>13 = Pt100 (4-/2-проводная схема)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 = Pt100 (3-проводная схема)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 = Pt200 (4-/2-проводная схема)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 = Pt200 (3-проводная схема)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 = Pt500 (4-/2-проводная схема)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 = Pt500 (3-проводная схема)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>19 = Pt1000 (4-/2-проводная схема)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 = Pt1000 (3-проводная схема)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>21 = L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>22 = J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>23 = K</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 = B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 = S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>26 = N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>27 = E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28 = T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>29 = R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Приложение 1: Обзор номеров программ

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
<th>Заводская настройка</th>
<th>Уровень авторизации</th>
<th>Уровень управления</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Измерительный вход</td>
<td>Сопротивление
30 = ≤ 100 Ом (4-/2-проводная схема)
31 = ≤ 1 кОм (4-/2-проводная схема)
32 = ≤ 10 кОм (4-/2-проводная схема)</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Наливировка датчика</td>
<td>33 = 0/4 ... 20 мА
34 = -1 ... +10 В пост. тока
35 = -1 ... + 5 В пост. тока
36 = -500 ... +2500 мВ пост. тока
37 = -500 ... +1250 мВ пост. тока
38 = -500 ... +600 мВ пост. тока
39 = ±300 мВ пост. тока
40 = ±150 мВ пост. тока
41 = ±75 мВ пост. тока
42 = ±35 мВ пост. тока
43 = ±18 мВ пост. тока
44 = 0 ... 5 мА
45 = 0 ... 2 мА</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>ВПИ</td>
<td>-9999 ... 99999</td>
<td>10000</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>НПИ</td>
<td>-9999 ... 99999</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Число знаков после запятой</td>
<td>00000 ... 0,0000 (кроме измерения температуры)</td>
<td>00000</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Термометры сопротивления</td>
<td>(PN0 = 13 ... 20)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0 = 8888,8 °C</td>
<td>1 = 8888,8 °F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = 8888,8 °F</td>
<td>2 = 8888 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = 8888 °C</td>
<td>4 = 888,8 °C (-99,9 ... 999,9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = 888,8 °F</td>
<td>5 = 888,8 °F (-99,9 ... 999,9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Термопара</td>
<td>(PN0 = 21 ... 29)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0 = 8888,8 °C (°C)</td>
<td>1 = 8888,8 °C (°F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = 8888,8 °F (°F)</td>
<td>2 = 8888 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = 8888 °C</td>
<td>3 = 8888 °F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Приложение 1: Обзор номеров программ

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
<th>Заводская настройка</th>
<th>Уровень авторизации</th>
<th>Уровень управления</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Величина смещения</td>
<td>Аналоговые измерения/измерения сопротивления и калибровка датчика (PN0 = 1 ... 12 и 30 ... 45) -9999 ... 99999</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Датчики температуры (PN0 = 13 ... 29) Диапазон измерения</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Таблица сравнительных измерений</td>
<td>0 = Неактивна 1 = Активна</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Уставка тарировки</td>
<td>-9999 ... 99999</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Триgger тарировки</td>
<td>00 = Нет 01 = Цифровой вход 02 = Многофункциональная клавиша 03 = Цифровой вход без клавиш</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>04 = Пуск системы 05 = Комбинация 1 + 4 06 = Комбинация 2 + 4 07 = Комбинация 3 + 4 08 = Временно через цифровой вход</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>09 = Быстро через цифровой вход 10 = Быстро через многофункциональную клавиш</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 = Быстро через многофункциональную клавишу и цифровой вход</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Запуск функции усреднения</td>
<td>0 = выкл 1 ... 100 измеренных значений</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>Период обновления</td>
<td>0,1 ... 10,0 с</td>
<td>1,0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>PN</td>
<td>Функция</td>
<td>Параметр</td>
<td>Заводская настройка</td>
<td>Уровень авторизации</td>
<td>Уровень управления</td>
</tr>
<tr>
<td>----</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--------------------</td>
<td>----------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>14</td>
<td>Время измерения</td>
<td>Ток, напряжение (PN0 = 1 ... 12 или 33 ... 45)</td>
<td>0,02 ... 10</td>
<td>1,0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Сопротивление (4-/2-проводная схема)</td>
<td>0,04 ... 10</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Сопротивление (3-проводная схема)</td>
<td>0,06 ... 10</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Термопара (PN0 = 21 ... 29)</td>
<td>0,04 ... 10</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>Режим индикации</td>
<td>1 = Мгновенное значение</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Значение MIN</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = Значение MAX</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = Значение HOLD</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 = Текущее среднее</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 = Значение сумматора</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 = Абсолютное значение</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 = Режим тринггера</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>Триггер сброса для MIN/MAX</td>
<td>0 = Без тринггера</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Цифровой вход</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Многофункциональная клавиша</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = Цифровой вход или многофункциональная клавиша</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = При тарировке</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>Подавление нулевой точки</td>
<td>0 ... 99999</td>
<td>10000</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>Яркость индикатора</td>
<td>0 ... 9 (0 = ярко, 9 = тускло)</td>
<td>3</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

Аналоговый выход (опция)

20	ВПИ	-9999 ... 99999	1000	2	2
21	НПИ	-9999 ... 99999	0	2	2
22	Опорное значение	0 = Неактивна	1	4	2
		1 = Мгновенное значение			
		2 = Значение MIN			
		3 = Значение MAX			
		4 = Значение HOLD			
		5 = Текущее среднее			
		6 = Значение сумматора			
		7 = Абсолютное значение			
23	Выходной сигнал	0 = 0 ... 10 В пост. тока	2	4	1
Приложение 1: Обзор номеров программ

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
<th>Заводская настройка</th>
<th>Уровень авторизации</th>
<th>Уровень управления</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Интерфейс</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Свойства интерфейса</td>
<td>0 = Стандартный режим</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Режим передачи</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Авторизация пользователя</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Код блокировки</td>
<td>0000 ... 9999</td>
<td>0000</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>51</td>
<td>Код сброса блокировки</td>
<td>0000 ... 9999</td>
<td>0000</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>52</td>
<td>Уровень авторизации</td>
<td>0 ... 8</td>
<td>8</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>53</td>
<td>Уровень управления</td>
<td>1 = Простой</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Профессиональный</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Специальные функции</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Мигающий индикатор</td>
<td>0 = Неактивна</td>
<td>0</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = В точке переключения 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = В точке переключения 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = В точке переключения 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = В точке переключения 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 = В точке переключения 1 + 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 = В точке переключения 3 + 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 = В точке переключения 1 + 2 + 3 + 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Коммутирующий выход 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Опорное значение</td>
<td>0 = Неактивна</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Мгновенное значение</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Значение MIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = Значение MAX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = Значение HOLD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 = Текущее среднее</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 = Значение сумматора</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 = Абсолютное значение</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Точка переключения</td>
<td>-9999 ... 99999</td>
<td>1000</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>62</td>
<td>Гистерезис</td>
<td>1 ... 99999</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>63</td>
<td>Функция переключения</td>
<td>0 = нормально замкнут</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = нормально разомкнут</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Задержка переключения</td>
<td>0 ... 10,0 секунд</td>
<td>0,0</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>65</td>
<td>Тип задержки</td>
<td>0 = Нет</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Задержка включения</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Задержка выключения</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = Задержка включения и выключения</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = Подавление через активированный цифровой вход</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Приложение 1: Обзор номеров программ

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
<th>Заводская настройка</th>
<th>Уровень авторизации</th>
<th>Уровень управления</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>Подтверждение точки переключения</td>
<td>0 = Без блокировки выключения с помощью многофункциональной клавиши</td>
<td>0</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Блокировка выключения через цифровой вход</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Блокировка выключения через цифровой вход</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = Блокировка выключения с помощью многофункциональной клавиши или через цифровой вход</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = Без блокировки выключения</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 = Блокировка выключения с помощью многофункциональной клавиши</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 = Блокировка включения через цифровой вход</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 = Блокировка включения с помощью многофункциональной клавиши или через внешний вход</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Коммутирующий выход 2

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
<th>Заводская настройка</th>
<th>Уровень авторизации</th>
<th>Уровень управления</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>Опорное значение</td>
<td>0 = Неактивна</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Прямое значение</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Значение MIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = Значение MAX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = Значение HOLD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 = Текущее среднее</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 = Значение сумматора</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 = Абсолютное значение</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Точка переключения</td>
<td>-9999 ... 99999</td>
<td>1000</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>72</td>
<td>Гистерезис</td>
<td>1 ... 99999</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>73</td>
<td>Функция переключения</td>
<td>0 = Нормально замкнут</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Нормально разомкнут</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Задержка переключения</td>
<td>0 ... 10,0 секунд</td>
<td>0,0</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>
Приложение 1: Обзор номеров программ

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
<th>Заводская настройка</th>
<th>Уровень авторизации</th>
<th>Уровень управления</th>
</tr>
</thead>
</table>
| 75 | Тип задержки | 0 = Нет
1 = Задержка включения
2 = Задержка выключения
3 = Задержка включения и выключения
4 = Подавление через активированный цифровой вход | 1 | 6 | 1 |
| 77 | Подтверждение точки переключения | 0 = Без блокировки
1 = Блокировка выключения с помощью многофункциональной клавиши
2 = Блокировка выключения через цифровой вход
3 = Блокировка выключения с помощью многофункциональной клавиши или через цифровой вход
4 = Без блокировки
5 = Блокировка включения с помощью многофункциональной клавиши
6 = Блокировка включения через цифровой вход
7 = Блокировка включения с помощью многофункциональной клавиши или через внешний вход | 0 | 6 | 2 |

Коммутирующий выход 3

<table>
<thead>
<tr>
<th>PN</th>
<th>Опорное значение</th>
<th>Параметр</th>
<th>Заводская настройка</th>
<th>Уровень авторизации</th>
<th>Уровень управления</th>
</tr>
</thead>
</table>
| 80 | Опорное значение | 0 = Неактивна
1 = Мгновенное значение
2 = Значение MIN
3 = Значение MAX
4 = Значение HOLD
5 = Текущее среднее
6 = Значение сумматора
7 = Абсолютное значение | 1 | 6 | 1 |
| 81 | Точка переключения | -9999 ... 99999 | 1000 | 6 | 1 |
| 82 | Гистерезис | 1 ... 99999 | 1 | 6 | 1 |
| 83 | Функция переключения | 0 = Нормально замкнут
1 = Нормально разомкнут | 1 | 6 | 1 |
Приложение 1: Обзор номеров программ

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
<th>Заводская настройка</th>
<th>Уровень авторизации</th>
<th>Уровень управления</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>Задержка переключения</td>
<td>0 ... 10,0 секунд</td>
<td>0,0</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>85</td>
<td>Тип задержки</td>
<td>0 = Нет</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Задержка включения</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Задержка выключения</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = Задержка включения и выключения</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = Подавление через активированный цифровой вход</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Подтверждение точки переключения</td>
<td>0 = Без блокировки</td>
<td>0</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Блокировка выключения с помощью многофункциональной клавиши</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Блокировка выключения через цифровой вход</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = Блокировка выключения с помощью многофункциональной клавиши или через цифровой вход</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = Без блокировки</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 = Блокировка включения с помощью многофункциональной клавиши</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 = Блокировка включения через цифровой вход</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 = Блокировка включения с помощью многофункциональной клавиши или через внешний вход</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Коммутирующий выход 4

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
<th>Заводская настройка</th>
<th>Уровень авторизации</th>
<th>Уровень управления</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Опорное значение</td>
<td>0 = Неактивна</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Мгновенное значение</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Значение MIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = Значение MAX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = Значение HOLD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 = Текущее среднее</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 = Значение сумматора</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 = Абсолютное значение</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Точка переключения</td>
<td>-9999 ... 99999</td>
<td>1000</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>92</td>
<td>Гистерезис</td>
<td>1 ... 99999</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>
Приложение 1: Обзор номеров программ

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция переключения</th>
<th>Параметр</th>
<th>Заводская настройка</th>
<th>Уровень авторизации</th>
<th>Уровень управления</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>Функция переключения</td>
<td>0 = Нормально замкнут 1 = Нормально разомкнут</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>94</td>
<td>Задержка переключения</td>
<td>0 ... 10,0 секунд</td>
<td>0,0</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>95</td>
<td>Тип задержки</td>
<td>0 = Нет 1 = Задержка включения 2 = Задержка выключения 3 = Задержка включения и выключения 4 = Подавление через активированный цифровой вход</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>97</td>
<td>Подтверждение точки переключения</td>
<td>0 = Без блокировки 1 = Блокировка выключения с помощью многофункциональной клавиши 2 = Блокировка выключения через цифровой вход 3 = Блокировка выключения с помощью многофункциональной клавиши или через цифровой вход 4 = Без блокировки 5 = Блокировка включения с помощью многофункциональной клавиши 6 = Блокировка включения через цифровой вход 7 = Блокировка включения с помощью многофункциональной клавиши или через внешний вход</td>
<td>0</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

Линеаризация

| PN | Количество точек интерполяции Измерительный вход 1 | 0 ... 30 | 0 | 2 | 2 |

| PN | Отображаемое значение для точки интерполяции | -9999 ... 99999 | 2 | 2 |

Функция сумматора
Приложение 1: Обзор номеров программ

<table>
<thead>
<tr>
<th>PN</th>
<th>Функция</th>
<th>Параметр</th>
<th>Заводская настройка</th>
<th>Уровень авторизации</th>
<th>Уровень управления</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>Функция сумматора</td>
<td>0 = Выкл</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Функция сумматора без постоянного хранения (сброс при пуске)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = Функция сумматора с постоянным хранением</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>Временной базис для отображаемой величины</td>
<td>0 = Секунда 1 = Минута 2 = Час</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>182</td>
<td>Коэффициент, кратный 10</td>
<td>0 = 1 ... 6 = 100000</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>183</td>
<td>Положение десятичной точки для значения сумматора</td>
<td>00000 ... 0,0000</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>184</td>
<td>Считываемое значение, начальное значение</td>
<td>0 ... 99999</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>185</td>
<td>Триггер сброса</td>
<td>0 = Без триггера 1 = Многофункциональная клавиша 2 = Цифровой вход 3 = Многофункциональная клавиша или через цифровой вход 4 = [▲] или [▼] во время индикации значения сумматора</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>186</td>
<td>Триггер для изменения индикации</td>
<td>0 = Без триггера 1 = Многофункциональная клавиша 2 = Цифровой вход</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Серийный номер

| PN | Считывание серийного номера | 0 ... 99999 | 0 | 8 | 2 |