Prozessdrucktransmitter CPT-2x

4 … 20 mA/HART
Keramischer Sensor
Inhaltsverzeichnis

1 Zu diesem Dokument .. 4
 1.1 Funktion ... 4
 1.2 Zielgruppe ... 4
 1.3 Verwendete Symbolik .. 4

2 Zu Ihrer Sicherheit .. 5
 2.1 Autorisiertes Personal ... 5
 2.2 Bestimmungsgemäße Verwendung ... 5
 2.3 Warnung vor Fehlgebrauch .. 5
 2.4 Allgemeine Sicherheitshinweise .. 5
 2.5 EU-Konformität ... 6
 2.6 Zulässiger Prozessdruck .. 6
 2.7 NAMUR-Empfehlungen .. 6

3 Produktbeschreibung .. 7
 3.1 Aufbau .. 7
 3.2 Arbeitsweise ... 8
 3.3 Ergänzende Reinigungsverfahren .. 12
 3.4 Verpackung, Transport und Lagerung ... 13

4 Montieren ... 14
 4.1 Allgemeine Hinweise ... 14
 4.2 Belüftung und Druckausgleich .. 15
 4.3 Prozessdruckmessung .. 17
 4.4 Füllstandmessung .. 19
 4.5 Externes Gehäuse ... 20

5 An die Spannungsversorgung anschließen .. 21
 5.1 Anschluss vorbereiten ... 21
 5.2 Anschließen ... 23
 5.3 Einkammergehäuse .. 24
 5.4 Zweikammergehäuse ... 25
 5.5 Gehäuse IP 66/IP 68 (1 bar) ... 26
 5.6 Externes Gehäuse bei Ausführung IP 68 (25 bar) .. 27
 5.7 Einschalthebel .. 28

6 In Betrieb nehmen mit dem Anzeige- und Bedienmodul ... 30
 6.1 Anzeige- und Bedienmodul einsetzen ... 30
 6.2 Bediensystem ... 31
 6.3 Messwertanzeige ... 32
 6.4 Parametrierung - Schnellinbetriebnahme ... 33
 6.5 Parametrierung - Erweiterte Bedienung ... 33
 6.6 Sicherung der Parametrierdaten .. 46

7 In Betrieb nehmen mit PACTware ... 47
 7.1 Den PC anschließen ... 47
 7.2 Parametrierung .. 47
 7.3 Sicherung der Parametrierdaten .. 48

8 Diagnose, Asset Management und Service .. 49
 8.1 Instandhalten .. 49
 8.2 Reinigen - aseptischer Anschluss mit Nutüberwurfmutter .. 49
8.3 Diagnosespeicher ... 50
8.4 Asset-Management-Funktion .. 51
8.5 Störungen beseitigen ... 54
8.6 Prozessbaugruppe bei Ausführung IP 68 (25 bar) tauschen ... 55
8.7 Das Gerät reparieren ... 56

9 Ausbauen .. 57
 9.1 Ausbauschritte ... 57
 9.2 Entsorgen ... 57

10 Anhang .. 58
 10.1 Technische Daten .. 58
 10.2 Berechnung der Gesamtabweichung .. 71
 10.3 Berechnung der Gesamtabweichung - Praxisbeispiel .. 71
 10.4 Maße ... 74
 10.5 Warenzeichen .. 85

Sicherheitshinweise für Ex-Bereiche

Redaktionsstand: 2018-03-05
1 Zu diesem Dokument

1.1 Funktion

1.2 Zielgruppe
Diese Betriebsanleitung richtet sich an ausgebildetes Fachpersonal. Der Inhalt dieser Anleitung muss dem Fachpersonal zugänglich gemacht und umgesetzt werden.

1.3 Verwendete Symbolik

Information, Tipp, Hinweis
Dieses Symbol kennzeichnet hilfreiche Zusatzinformationen.

Vorsicht: Bei Nichtbeachten dieses Warnhinweises können Störungen oder Fehlfunktionen die Folge sein.

Warnung: Bei Nichtbeachten dieses Warnhinweises kann ein Personenschaden und/oder ein schwerer Geräteschaden die Folge sein.

Gefahr: Bei Nichtbeachten dieses Warnhinweises kann eine ernsthafte Verletzung von Personen und/oder eine Zerstörung des Gerätes die Folge sein.

Ex-Anwendungen
Dieses Symbol kennzeichnet besondere Hinweise für Ex-Anwendungen.

• Liste
Der vorangestellte Punkt kennzeichnet eine Liste ohne zwingende Reihenfolge.

→ Handlungsschritt
Dieser Pfeil kennzeichnet einen einzelnen Handlungsschritt.

1 Handlungsfolge
Vorangestellte Zahlen kennzeichnen aufeinander folgende Handlungsschritte.

Batterieentsorgung
Dieses Symbol kennzeichnet besondere Hinweise zur Entsorgung von Batterien und Akkus.
2 Zu Ihrer Sicherheit

2.1 Autorisiertes Personal
Sämtliche in dieser Dokumentation beschriebenen Handhabungen dürfen nur durch ausgebildetes und vom Anlagenbetreiber autorisiertes Fachpersonal durchgeführt werden.

Bei Arbeiten am und mit dem Gerät ist immer die erforderliche personliche Schutzausrüstung zu tragen.

2.2 Bestimmungsgemäße Verwendung
Der CPT-2x ist ein Druckmessumformer zur Prozessdruck- und hydrostatischen Füllstandmessung.

Detaillierte Angaben zum Anwendungsbereich finden Sie in Kapitel "Produktbeschreibung".

Die Betriebssicherheit des Gerätes ist nur bei bestimmungsgemäßer Verwendung entsprechend den Angaben in der Betriebsanleitung sowie in den evtl. ergänzenden Anleitungen gegeben.

2.3 Warnung vor Fehlgebrauch

2.4 Allgemeine Sicherheitshinweise

Der Betreiber ist ferner verpflichtet, während der gesamten Einsatzdauer die Übereinstimmung der erforderlichen Arbeitssicherheitsmaßnahmen mit dem aktuellen Stand der jeweils geltenden Regelwerke festzustellen und neue Vorschriften zu beachten.

Durch den Anwender sind die Sicherheitshinweise in dieser Betriebsanleitung, die landesspezifischen Installationsstandards sowie die geltenden Sicherheitsbestimmungen und Unfallverhütungsvorschriften zu beachten.

Eingriffe über die in der Betriebsanleitung beschriebenen Handhabungen hinaus dürfen aus Sicherheits- und Gewährleistungsgründen nur durch vom Hersteller autorisiertes Personal vorgenommen werden. Eigenmächtige Umbauten oder Veränderungen sind ausdrück-
lich untersagt. Aus Sicherheitsgründen darf nur das vom Hersteller benannte Zubehör verwendet werden.

Um Gefährdungen zu vermeiden, sind die auf dem Gerät angebrachten Sicherheitskennzeichen und -hinweise zu beachten und deren Bedeutung in dieser Betriebsanleitung nachzulesen.

2.5 EU-Konformität

Das Gerät erfüllt die gesetzlichen Anforderungen der zutreffenden EU-Richtlinien. Mit der CE-Kennzeichnung bestätigen wir die Konformität des Gerätes mit diesen Richtlinien.

2.6 Zulässiger Prozessdruck

Der zulässige Prozessdruckbereich wird mit "Process pressure" auf dem Typschild angegeben, siehe Kapitel "Aufbau". Die Angabe gilt auch, wenn auftragsbezogen eine Messzelle mit höherem Messbereich als der zulässige Druckbereich des Prozessanschlusses eingebaut ist.

Ein Temperaturderating, z. B. bei Flanschen, kann den zulässigen Prozessdruckbereich einschränken.

2.7 NAMUR-Empfehlungen

Die NAMUR ist die Interessengemeinschaft Automatisierungstechnik in der Prozessindustrie in Deutschland. Die herausgegebenen NAMUR-Empfehlungen gelten als Standards in der Feldinstrumentierung.

Das Gerät erfüllt die Anforderungen folgender NAMUR-Empfehlungen:

- NE 21 – Elektromagnetische Verträglichkeit von Betriebsmitteln
- NE 43 – Signalpegel für die Ausfallinformation von Messumformern
- NE 53 – Kompatibilität von Feldgeräten und Anzeige-/Bedienkomponenten
- NE 107 - Selbstüberwachung und Diagnose von Feldgeräten

Weitere Informationen siehe www.namur.de.
3 Produktbeschreibung

3.1 Aufbau

Das Typschild enthält die wichtigsten Daten zur Identifikation und zum Einsatz des Gerätes:

Abb. 1: Aufbau des Typschildes (Beispiel)

1 Gerätetyp
2 Feld für Zulassungen
3 Signalausgang und Spannungsversorgung
4 Schutzart
5 Messbereich
6 Zulässige Prozessbedingungen
7 Werkstoff medienberührte Teile
8 Produktcode
9 Auftragsnummer
10 Seriennummer des Gerätes
11 Symbol für Geräteschutzklasse
12 ID-Nummern Gerätedokumentation
13 Hinweis zur Beachtung der Gerätedokumentation

Die vorliegende Betriebsanleitung gilt für folgende Geräteausführungen:
- Hardware ab 1.0.0
- Software ab 1.3.2

Hinweis:
Sie finden die Hard- und Softwareversion des Gerätes wie folgt:
- Auf dem Typschild des Elektronikeinsatzes
- Im Bedienmenü unter "Info"

Der Lieferumfang besteht aus:
- Gerät CPT-2x
- Dokumentation
 - Betriebsanleitung CPT-2x
 - Kennlinien-Prüfzertifikat
 - Anleitungen zu optionalen Geräteausstattungen
 - Ex-spezifischen "Sicherheitshinweisen" (bei Ex-Ausführungen)
 - Ggf. weiteren Bescheinigungen
3 Produktbeschreibung

Hinweis:
In dieser Betriebsanleitung werden auch optionale Gerätemerkmale beschrieben. Der jeweilige Lieferumfang ergibt sich aus der Bestellspezifikation.

3.2 Arbeitsweise

Messgrößen
Der CPT-2x eignet sich für die Messung folgender Prozessgrößen:
- Prozessdruck
- Füllstand

Abb. 2: Prozessdruckmessung mit CPT-2x

Anwendungsbereich
Der CPT-2x ist für Anwendungen in nahezu allen Industriebereichen geeignet. Er wird zur Messung folgender Druckarten verwendet.
- Überdruck
- Absolutdruck
- Vakuum

Messmedien
Messmedien sind Gase, Dämpfe und Flüssigkeiten. Je nach Prozessanschluss und Messanordnung dürfen die Messmedien auch viskos sein oder abrasive Inhaltsstoffe haben.

Messsystem Druck
Sensorelement ist eine Messzelle mit robuster Keramikmembran. Der Prozessdruck lenkt die Keramikmembran aus und bewirkt so eine Kapazitätsänderung in der Messzelle. Diese wird in ein elektrisches Signal umgewandelt und als Messwert über das Ausgangssignal ausgegeben.
Die Messzelle wird in zwei Baugrößen eingesetzt: ø 28 mm und ø 17,5 mm.

Einsatz ø 28 mm, z. B. bei:
- Gewinde G½ EN 837 (Manometeranschluss)
- Gewinde G1½, M44x1,25 und größer
- Flansche und Hygieneanschlüsse DN 32 und größer
- Messbereiche 25 mbar und 100 bar

Einsatz ø 17,5 mm, z. B. bei:
- Gewinde G½ ISO 228-1 (frontbündig), Gewinde G¾ DIN 3852-E, Gewinde G1 ISO 228-1
- Gewinde G1 geeignet für PASVE
- Gewinde M30 x 1,5
- Flansche und Hygieneanschlüsse DN 25 und kleiner

Messsystem Temperatur
Ein Temperatursensor in der Keramikmembran der ø 28 mm- bzw. auf dem Keramikgrundkörper der ø 17,5 mm-Messzelle erfasst die aktuelle Prozesstemperatur. Der Temperaturwert wird ausgegeben über:
- Das Anzeige- und Bedienmodul
- Den Stromausgang oder den digitalen Signalausgang

Auch extreme Sprünge der Prozesstemperatur werden bei der ø 28 mm-Messzelle sofort erfasst. Die Werte werden mit denen einer weiteren Temperaturmessung auf dem Keramikgrundkörper verglichen.

Die intelligente Sensorelektronik kompensiert innerhalb weniger Messzyklen sonst unvermeidliche Messabweichungen durch Temperaturschocks. Diese verursachen je nach eingestellter Dämpfung nur noch geringfügige und kurzzeitige Änderungen des Ausgangssignals.

Druckarten
Je nach gewählter Druckart ist die Messzelle unterschiedlich aufgebaut.
Relativdruck: die Messzelle ist zur Atmosphäre offen. Der Umgebungsdruck wird in der Messzelle erfasst und kompensiert. Er hat somit auf den Messwert keinen Einfluss.

Absolutdruck: die Messzelle ist evakuiert und gekapselt. Der Umgebungsdruck wird nicht kompensiert und beeinflusst somit den Messwert.

Dichtungskonzepte

Die folgenden Darstellungen zeigen Beispiele für den Einbau der keramischen Messzelle in den Prozessanschluss und die unterschiedlichen Dichtungskonzepte.

Zurückgesetzter Einbau

Der zurückgesetzte Einbau ist besonders geeignet für Anwendungen bei Gase, Dämpfen und klaren Flüssigkeiten. Die Messzellendichtung sitzt seitlich sowie zusätzlich vorne.

Abb. 4: Zurückgesetzter Einbau der Messzelle (Beispiel: Manometeranschluss G 1/2)

1. Messzelle
2. Dichtung für Messzelle
3. Zusätzliche, vorn liegende Dichtung für Messzelle
4. Membran
5. Prozessanschluss
6. Dichtung für Prozessanschluss

Frontbündiger Einbau mit Einfachdichtung

Abb. 5: Frontbündiger Einbau der Messzelle (Beispiel: Gewinde G 1 1/2)

1. Dichtung für Prozessanschluss
2. Messzelle
3. Dichtung für Messzelle
4. Prozessanschluss
5. Membran
3 Produktbeschreibung

Absolut frontbündiger Einbau mit Einfachdichtung

Der absolut frontbündige Einbau ist besonders geeignet für Anwendungen in der Papierindustrie. Die Membran befindet sich im Stoffstrom, wird dadurch gereinigt und ist so vor Ablagerungen geschützt.

![Frontbündiger Einbau der Messzelle](image6.png)

Abb. 6: Frontbündiger Einbau der Messzelle (Beispiel: M30 x 1,5)

1. Messzelle
2. Dichtung für Messzelle
3. Dichtung für Prozessanschluss
4. Prozessanschluss
5. Membran

Frontbündiger Einbau mit Doppeldichtung

Der frontbündige Einbau ist besonders geeignet für Anwendungen mit viskosen Medien. Die zusätzliche, vorn liegende Dichtung schützt die Glasnaht der Messzelle vor chemischem Angriff und die Messzellenlektronik vor Diffusion aggressiver Gase aus dem Prozess.

![Frontbündiger Einbau der Messzelle mit Doppeldichtung](image7.png)

Abb. 7: Frontbündiger Einbau der Messzelle mit Doppeldichtung (Beispiel: Flanschanschluss mit Tubus)

1. Messzelle
2. Dichtung für Messzelle
3. Prozessanschluss
4. Zusätzliche, vorn liegende Dichtung für Messzelle
5. Membran

Einbau in Hygienean schluss

Der frontbündige, hygienische Einbau der Messzelle ist besonders geeignet für Lebensmittelanwendungen. Die Dichtungen sind spaltfrei eingebaut. Die Formdichtung für die Messzelle schützt gleichzeitig die Glasnaht.
3 Produktbeschreibung

Einbau in Hygieneanschluss nach 3-A

3.3 Ergänzende Reinigungsverfahren

Der CPT-2x steht auch in der Ausführung "Öl-, fett- und silikonölfrei" zur Verfügung. Diese Geräte haben ein spezielles Reinigungsverfahren zum Entfernen von Ölen, Fetten und weitere lackbenetzungsstörenden Substanzen (LABS) durchlaufen.

Vorsicht:
Der CPT-2x in dieser Ausführung darf nicht in Sauerstoffanwendungen eingesetzt werden. Hierfür stehen Geräte in spezieller Ausführung "Öl- und fettfrei für Sauerstoffanwendung" zur Verfügung.
3.4 Verpackung, Transport und Lagerung

Verpackung
Ihr Gerät wurde auf dem Weg zum Einsatzort durch eine Verpackung geschützt. Dabei sind die üblichen Transportbeanspruchungen durch eine Prüfung in Anlehnung an ISO 4180 abgesichert.

Bei Standardgeräten besteht die Verpackung aus Karton, ist umweltverträglich und wieder verwertbar. Bei Sonderausführungen wird zusätzlich PE-Schaum oder PE-Folie verwendet. Entsorgen Sie das anfallende Verpackungsmaterial über spezialisierte Recyclingbetriebe.

Transport
Der Transport muss unter Berücksichtigung der Hinweise auf der Transportverpackung erfolgen. Nichtbeachtung kann Schäden am Gerät zur Folge haben.

Transportinspektion
Die Lieferung ist bei Erhalt unverzüglich auf Vollständigkeit und eventuelle Transportschäden zu untersuchen. Festgestellte Transportschäden oder verdeckte Mängel sind entsprechend zu behandeln.

Lagerung
Die Packstücke sind bis zur Montage verschlossen und unter Beachtung der außen angebrachten Aufstell- und Lagermarkierungen aufzubewahren.

Packstücke, sofern nicht anders angegeben, nur unter folgenden Bedingungen lagern:
- Nicht im Freien aufbewahren
- Trocken und staubfrei lagern
- Keinen aggressiven Medien aussetzen
- Vor Sonneneinstrahlung schützen
- Mechanische Erschütterungen vermeiden

Lager- und Transporttemperatur
- Lager- und Transporttemperatur siehe Kapitel "Anhang - Technische Daten - Umgebungsbedingungen"
- Relative Luftfeuchte 20 ... 85 %

Heben und Tragen
Bei Gerätegewichten über 18 kg (39.68 lbs) sind zum Heben und Tragen dafür geeignete und zugelassene Vorrichtungen einzusetzen.
4 Montieren

4.1 Allgemeine Hinweise

Eignung für die Prozessbedingungen

Stellen Sie vor der Montage sicher, dass sämtliche im Prozess befindlichen Teile des Gerätes für die auftretenden Prozessbedingungen geeignet sind.

Dazu zählen insbesondere:

- Messaktiver Teil
- Prozessanschluss
- Prozessdichtung

Prozessbedingungen sind insbesondere:

- Prozessdruck
- Prozesstemperatur
- Chemische Eigenschaften der Medien
- Abrasion und mechanische Einwirkungen

Die Angaben zu den Prozessbedingungen finden Sie in Kapitel "Technische Daten" sowie auf dem Typschild.

Eignung für die Umgebungsbedingungen

Das Gerät ist für normale und erweiterte Umgebungsbedingungen nach IEC/EN 61010-1 geeignet.

Schutz vor Feuchtigkeit

Schützen Sie Ihr Gerät durch folgende Maßnahmen gegen das Eindringen von Feuchtigkeit:

- Passendes Anschlusskabel verwenden (siehe Kapitel "An die Spannungsversorgung anschließen")
- Kabelverschraubung bzw. Steckverbinder fest anziehen
- Bei waagerechter Montage das Gehäuse so drehen, so dass die Kabelverschraubung bzw. Steckverbinder nach unten zeigen
- Anschlusskabel vor Kabelverschraubung bzw. Steckverbinder nach unten führen

Dies gilt vor allem bei Montage im Freien, in Räumen, in denen mit Feuchtigkeit zu rechnen ist (z. B. durch Reinigungsprozesse) und an gekühlten bzw. beheizten Behältern.

Stellen Sie zur Erhaltung der Geräteschutzart sicher, dass der Gehäusedeckel im Betrieb geschlossen und ggfs. gesichert ist.

Stellen Sie sicher, dass der in Kapitel "Technische Daten" der Betriebsanleitung angegebene Verschmutzungsgrad zu den vorhandenen Umgebungsbedingungen passt.

Einschrauben

Bei Geräten mit Gewindeanschluss muss der Sechskant mit einem passendem Schraubenschlüssel angezogen werden. Schlüsselweite siehe Kapitel "Maße".

Warnung:

Das Gehäuse darf nicht zum Einschrauben verwendet werden! Das Festziehen kann Schäden an der Drehmechanik des Gehäuses verursachen.
4 Montieren

Vibrationen
Bei starken Vibrationen an der Einsatzstelle sollte die Geräteausführung mit externem Gehäuse verwendet werden. Siehe Kapitel "Externes Gehäuse".

Prozessdruckbereich - Montagezubehör
Der zulässige Prozessdruckbereich wird auf dem Typschild angegeben. Das Gerät darf mit diesen Drücken nur betrieben werden, wenn das verwendete Montagezubehör diese Werte ebenfalls erfüllt. Stellen Sie dies durch geeignete Flansche, Einschweißstutzen, Spannringe bei Clamp-Anschlüssen, Dichtungen etc. sicher.

Temperaturgrenzen
Höhere Prozesstemperaturen bedeuten oft auch höhere Umgebungstemperaturen. Stellen Sie sicher, dass die in Kapitel "Technische Daten" angegebenen Temperaturobergrenzen für die Umgebung von Elektronikgehäuse und Anschlusskabel nicht überschritten werden.

4.2 Belüftung und Druckausgleich
Das Filterelement im Elektronikgehäuse hat folgende Funktionen:
- Belüftung Elektronikgehäuse
- Atmosphärischer Druckausgleich (bei Relativdruckmessbereichen)

Vorsicht:
Das Filterelement bewirkt einen zeitverzögerten Druckausgleich. Beim schnellen Öffnen/Schließen des Gehäusedeckels kann sich deshalb der Messwert für ca. 5 s um bis zu 15 mbar ändern.

Für eine wirksame Belüftung muss das Filterelement immer frei von Ablagerungen sein. Drehen Sie deshalb bei waagerechter Montage das Gehäuse so, dass das Filterelement nach unten zeigt. Es ist damit besser vor Ablagerungen geschützt.

Vorsicht:
Verwenden Sie zur Reinigung keinen Hochdruckreiniger. Das Filterelement könnte beschädigt werden und Feuchtigkeit ins Gehäuse eindringen.

In den folgenden Abschnitten wird beschrieben, wie das Filterelement bei den einzelnen Geräteausführungen angeordnet ist.
Filterelement - Position

Abb. 11: Position des Filterelementes
1 Kunststoff-, Edelstahl-Einkammer (Feinguss)
2 Aluminium-Einkammer
3 Edelstahl-Einkammer (elektropoliert)
4 Kunststoff-Zweikammer
5 Aluminium-Zweikammer
6 Filterelement

Bei folgenden Geräten ist statt des Filterelementes ein Blindstopfen eingebaut:

- Geräte in Schutzart IP 66/IP 68 (1 bar) - Belüftung über Kapillare im fest angeschlossenen Kabel
- Geräte mit Absolutdruck

Filterelement - Position Ex-d-Ausführung

→ Drehen Sie den Metallring so, dass das Filterelement nach Einbau des Gerätes nach unten zeigt. Es ist damit besser vor Ablagerungen geschützt.

Abb. 12: Position des Filterelementes - Ex-d-Ausführung
1 Drehbarer Metallring
2 Filterelement

Bei Geräten mit Absolutdruck ist statt des Filterelementes ein Blindstopfen eingebaut.

Bei Relativdruckmessbereichen wird der Umgebungsdruck durch einen Referenzsensor in der Elektronik erfasst und kompensiert.

Abb. 13: Position des Filterelementes - gasdichte Durchführung
1 Filterelement
2 Gasdichte Durchführung

Bei Geräten mit Absolutdruck ist statt des Filterelementes ein Blindstopfen eingebaut.

4.3 Prozessdruckmessung

Messanordnung in Gasen
Beachten Sie folgenden Hinweis zur Messanordnung:

- Gerät oberhalb der Messstelle montieren

Mögliches Kondensat kann somit in die Prozessleitung abfließen.
4 Montieren

Messenordnung in Dämpfen

Beachten Sie folgende Hinweise zur Messanordnung:

- Über ein Wassersackrohr anschließen
- Wassersackrohr nicht isolieren
- Wassersackrohr vor Inbetriebnahme mit Wasser füllen

Abb. 16: Messanordnung bei der Prozessdruckmessung von Dämpfen in Rohrleitungen

1. CPT-2x
2. Absperrventil
3. Wassersackrohr in U- bzw. Kreisform
4. Rohrleitung

In den Rohrbögen bildet sich Kondensat und somit eine schützende Wasservorlage. Bei Heißdampfanwendungen wird damit eine Mediumtemperatur < 100 °C am Messumformer sichergestellt.
Messenordnung in Flüssigkeiten

Beachten Sie folgenden Hinweis zur Messanordnung:

- Gerät unterhalb der Messstelle montieren

Die Wirkdruckleitung ist so immer mit Flüssigkeit gefüllt und Gasblasen können zurück zur Prozessleitung steigen.

Abb. 17: Messanordnung bei der Prozessdruckmessung von Flüssigkeiten in Rohrleitungen

1. CPT-2x
2. Absperrventil
3. Rohrleitung

4.4 Füllstandmessung

Beachten Sie folgende Hinweise zur Messanordnung:

- Gerät unterhalb des Min.-Füllstandes montieren
- Gerät entfernt von Befüllstrom und Entleerung montieren
- Gerät geschützt vor Druckstößen eines Rührwerkes montieren

Abb. 18: Messanordnung bei der Füllstandmessung
4.5 Externes Gehäuse

Aufbau

![Diagramm des Externen Gehäuses](image)

Abb. 19: Anordnung Prozessbaugruppe, Externes Gehäuse
1. Rohrleitung
2. Prozessbaugruppe
3. Verbindungsleitung Prozessbaugruppe - Externes Gehäuse
4. Externes Gehäuse
5. Signalleitung

Montage

1. Bohrungen gemäß folgendem Bohrbild anzeichnen
2. Wandmontageplatte mit 4 Schrauben befestigen

![Bohrbild der Wandmontageplatte](image)

Abb. 20: Bohrbild - Wandmontageplatte
5 An die Spannungsversorgung anschließen

5.1 Anschluss vorbereiten

Sicherheitshinweise

Beachten Sie grundsätzlich folgende Sicherheitshinweise:

- Elektrischen Anschluss nur durch ausgebildetes und vom Anlagenbetreiber autorisiertes Fachpersonal durchführen
- Falls Überspannungen zu erwarten sind, Überspannungsschutzgeräte installieren

Warnung:

Nur in spannungslosem Zustand anschließen.

Spannungsversorgung

Die Spannungsversorgung und das Stromsignal erfolgen über daselbe zweiadriges Anschlusskabel. Die Betriebsspannung kann sich je nach Geräteausführung unterscheiden.

Die Daten für die Spannungsversorgung finden Sie in Kapitel "Technische Daten".

Sorgen Sie für eine sichere Trennung des Versorgungskreises von den Netzstromkreisen nach DIN EN 61140 VDE 0140-1.

Versorgen Sie das Gerät über einen energiebegrenzten Stromkreis nach IEC 61010-1, z. B. über ein Netzteil nach Class 2.

Berücksichtigen Sie folgende zusätzliche Einflüsse für die Betriebsspannung:

- Geringere Ausgangsspannung des Speisegerätes unter Nennlast (z. B. bei einem Sensorstrom von 20,5 mA oder 22 mA bei Störmeldung)
- Einfluss weiterer Geräte im Stromkreis (siehe Bürdenwerte in Kapitel "Technische Daten")

Anschlusskabel

Das Gerät wird mit handelsüblichem zweiadrigem Kabel ohne Schirm angeschlossen. Falls elektromagnetische Einstreuungen zu erwarten sind, die über den Prüfwerten der EN 61326-1 für industrielle Bereiche liegen, sollte abgeschirmtes Kabel verwendet werden.

Stellen Sie sicher, dass das verwendete Kabel die für maximal auftretende Umgebungstemperatur erforderliche Temperaturbeständigkeit und Brandsicherheit aufweist.

Im HART-Multidropbetrieb empfehlen wir, generell geschirmtes Kabel zu verwenden.

Verwenden Sie Kabel mit rundem Querschnitt bei Geräten mit Gehäuse und Kabelverschraubung. Verwenden Sie eine zum Kabeldurchmesser passende Kabelverschraubung, um die Dichtwirkung der Kabelverschraubung (IP-Schutzart) sicher zu stellen.

Kabelverschraubungen

Metrische Gewinde

Bei Gerätegehäusen mit metrischen Gewinden sind die Kabelverschraubungen werkseitig eingeschraubt. Sie sind durch Kunststoffstopfen als Transportschutz verschlossen.

Sie müssen diese Stopfen vor dem elektrischen Anschluss entfernen.
5 An die Spannungsversorgung anschließen

NPT-Gewinde
Bei Gerätegehäusen mit selbstdichtenden NPT-Gewinden können die Kabelverschraubungen nicht werkseitig eingeschraubt werden. Die freien Öffnungen der Kabeleinführungen sind deshalb als Transportschutz mit roten Staubschutzkappen verschlossen.

Sie müssen diese Schutzkappen vor der Inbetriebnahme durch zugelassene Kabelverschraubungen ersetzen oder mit geeigneten Blindstopfen verschließen.

Beim Kunststoffgehäuse muss die NPT-Kabelverschraubung bzw. das Conduit-Stahlrohr ohne Fett in den Gewindegewinde einsatz geschraubt werden.

Maximales Anzugsmoment für alle Gehäuse siehe Kapitel "Technische Daten".

Kabelschirmung und Erdung
Wenn geschirmtes Kabel erforderlich ist, empfehlen wir, den Kabelschirm beidseitig auf Erdenpotential zu legen. Im Sensor sollte der Schirm direkt an die innere Erdungsklemme angeschlossen werden. Die äußere Erdungsklemme am Gehäuse muss niederimpedant mit dem Erdpotential verbunden sein.

Bei Ex-Anlagen erfolgt die Erdung gemäß den Errichtungsvorschriften.

Bei Galvanikanlagen sowie bei Anlagen für kathodischen Korrosionsschutz ist zu berücksichtigen, dass erhebliche Potenzialunterschiede bestehen. Dies kann bei beidseitiger Schirmerdung zu unzulässig hohen Schirmströmen führen.

Information:
Die metallischen Teile des Gerätes (Prozessanschluss, Messwertaufnehmer, Hüllrohr etc.) sind leitend mit der inneren und äußeren Erdungsklemme am Gehäuse verbunden. Diese Verbindung besteht entweder direkt metallisch oder bei Geräten mit externer Elektronik über den Schirm der speziellen Verbindungsleitung.

Angaben zu den Potenzialverbindungen innerhalb des Gerätes finden Sie in Kapitel "Technische Daten".

Ausführung IP 68 (25 bar)

Nach Zusammenschalten und Anschluss an die Spannungsversorgung wird die Seriennummer automatisch aus der Prozessbaugruppe hochgeladen und auf dem Anzeige- und Bedienmodul angezeigt.
Hinweis:
Achten Sie beim Zusammenschalten darauf, dass die Prozessbaugruppe und die externen Elektronik dieselbe Seriennummer tragen. Andernfalls stimmen die Seriennummern auf dem Typschild und auf dem Anzeige- und Bedienmodul nicht überein.

5.2 Anschließen

Anschlusstechnik
Der Anschluss der Spannungsversorgung und des Signalausganges erfolgt über Federkraftklemmen im Gehäuse.
Die Verbindung zum Anzeige- und Bedienmodul bzw. zum Schnittstellenadapter erfolgt über Kontaktstifte im Gehäuse.

Information:

Anschlussschritte
Gehen Sie wie folgt vor:
1. Gehäusedeckel abschrauben
2. Evtl. vorhandenes Anzeige- und Bedienmodul durch leichtes Drehen nach links herausnehmen
3. Überwurfmutter der Kabelverschraubung lösen und Verschlussstopfen herausnehmen
4. Anschlusskabel ca. 10 cm (4 in) abmanteln, Aderenden ca. 1 cm (0.4 in) abisolieren
5. Kabel durch die Kabelverschraubung in den Sensor schieben
5 An die Spannungsversorgung anschließen

Abb. 22: Anschlussschritte 5 und 6
1 Einkammergehäuse
2 Zweikammergehäuse

6. Aderenden nach Anschlussplan in die Klemmen stecken

Information:

Weitere Informationen zum max. Aderquerschnitt finden Sie unter "Technische Daten - Elektromechanische Daten".

7. Korrekten Sitz der Leitungen in den Klemmen durch leichtes Ziehen prüfen
8. Schirm an die innere Erdungsklemme anschließen, die äußere Erdungsklemme mit dem Potenzialausgleich verbinden
9. Überwurfmutter der Kabelverschraubung fest anziehen. Der Dichtring muss das Kabel komplett umschließen
10. Evtl. vorhandenes Anzeige- und Bedienmodul wieder aufsetzen
11. Gehäusedeckel verschrauben

Der elektrische Anschluss ist somit fertig gestellt.

5.3 Einkammergehäuse

Die nachfolgende Abbildung gilt für die Nicht-Ex-, die Ex-ia- und die Ex-d-Ausführung.
5 An die Spannungsversorgung anschließen

Elektronik- und Anschlussraum

Abb. 23: Elektronik- und Anschlussraum - Einkammergehäuse
1 Spannungsversorgung, Signalausgang
2 Für Anzeige- und Bedienmodul bzw. Schnittstellenadapter
3 Für externe Anzeige- und Bedieneinheit bzw. Slave-Sensor
4 Erdungsklemme zum Anschluss des Kabelschirms

5.4 Zweikammergehäuse

Die nachfolgenden Abbildungen gelten sowohl für die Nicht-Ex-, als auch für die Ex-ia-Ausführung.

Elektronikraum

Abb. 24: Elektronikraum - Zweikammergehäuse
1 Interne Verbindung zum Anschlussraum
2 Für Anzeige- und Bedienmodul bzw. Schnittstellenadapter
5 An die Spannungsversorgung anschließen

Anschlussraum

Abb. 25: Anschlussraum - Zweikammergehäuse
1 Spannungsversorgung, Signalausgang
2 Für Anzeige- und Bedienmodul bzw. Schnittstellenadapter
3 Für externe Anzeige- und Bedieneinheit
4 Erdungsklemme zum Anschluss des Kabelschirms

5.5 Gehäuse IP 66/IP 68 (1 bar)

Aderbelegung Anschlusskabel

Abb. 26: Aderbelegung fest angeschlossenes Anschlusskabel
1 Braun (+) und blau (-) zur Spannungsversorgung bzw. zum Auswertesystem
2 Abschirmung
5.6 Externes Gehäuse bei Ausführung IP 68 (25 bar)

Abb. 27: CPT-2x in IP 68-Ausführung 25 bar mit axialem Kabelabgang, externes Gehäuse

1 Messwertaufnehmer
2 Anschlusskabel
3 Externes Gehäuse

Abb. 28: Elektronik- und Anschlussraum für Versorgung

1 Elektronikeinsatz
2 Kabelverschraubung für die Spannungsversorgung
3 Kabelverschraubung für Anschlusskabel Messwertaufnehmer
5 An die Spannungsversorgung anschließen

Klemmraum Gehäusesockel

Abb. 29: Anschluss der Prozessbaugruppe im Gehäusesockel
1 Gelb
2 Weiß
3 Rot
4 Schwarz
5 Abschirmung
6 Druckausgleichskapillare

Elektronik- und Anschlussraum

Abb. 30: Elektronik- und Anschlussraum externes Gehäuse
1 Spannungsversorgung/Signalausgang
2 Für Anzeige- und Bedienmodul bzw. Schnittstellenadapter
3 Für externe Anzeige- und Bedieneinheit bzw. Slave-Sensor
4 Erdungsklemme zum Anschluss des Kabelschirms

5.7 Einschaltpause

Nach dem Anschluss des Gerätes an die Spannungsversorgung bzw. nach Spannungswiederkehr führt das Gerät für ca. 5 s einen Selbsttest durch:

- Interne Prüfung der Elektronik
- Anzeige einer Statusmeldung auf Display bzw. PC
5 An die Spannungsversorgung anschließen

- Ausgangssignal bei Geräten mit Stromausgang springt auf den eingestellten Störstrom

Danach wird der aktuelle Messwert auf der Signalleitung ausgegeben. Der Wert berücksichtigt bereits durchgeführte Einstellungen, z. B. den Werksabgleich.
6 In Betrieb nehmen mit dem Anzeige- und Bedienmodul

6.1 Anzeige- und Bedienmodul einsetzen

Gehen Sie wie folgt vor:
1. Gehäusedeckel abschrauben
2. Anzeige- und Bedienmodul in die gewünschte Position auf die Elektronik setzen und nach rechts bis zum Einrasten drehen
3. Gehäusedeckel mit Sichtfenster fest verschrauben

Der Ausbau erfolgt sinngemäß umgekehrt.

Das Anzeige- und Bedienmodul wird vom Sensor versorgt, ein weiterer Anschluss ist nicht erforderlich.

Abb. 31: Einsetzen des Anzeige- und Bedienmoduls beim Einkammergehäuse im Elektronikraum
6 In Betrieb nehmen mit dem Anzeige- und Bedienmodul

Abb. 32: Einsetzen des Anzeige- und Bedienmoduls beim Zweikammergehäuse
1 Im Elektronikraum
2 Im Anschlussraum

Hinweis:
Falls Sie das Gerät mit einem Anzeige- und Bedienmodul zur ständigen Messwertanzeige nachrüsten wollen, ist ein erhöhter Deckel mit Sichtfenster erforderlich.

6.2 Bediensystem

Abb. 33: Anzeige- und Bedienelemente
1 LC-Display
2 Bedientasten

Tastenfunktionen

- **[OK]-Taste:**
 - In die Menüübersicht wechseln
 - Ausgewähltes Menü bestätigen
 - Parameter editieren
 - Wert speichern

- **[->]-Taste:**
 - Darstellung Messwert wechseln
 - Listeneintrag auswählen
 - Menüpunkte in der Schnelllinzbetriebnahme auswählen
 - Editierposition wählen
6 In Betrieb nehmen mit dem Anzeige- und Bedienmodul

- \([+]-\) Taste:
 - Wert eines Parameters verändern

- \([ESC]-\) Taste:
 - Eingabe abbrechen
 - In übergeordnetes Menü zurückspringen

Bediensystem

Zeitfunktionen

Bei einmaligem Betätigen der \([+]-\) und \([-\,\rightarrow]-\) Tasten ändert sich der editierte Wert bzw. der Cursor um eine Stelle. Bei Betätigen länger als 1 s erfolgt die Änderung fortlaufend.

Gleichzeitiges Betätigen der \([OK]-\) und \([ESC]-\) Tasten für mehr als 5 s bewirkt einen Rücksprung ins Grundmenü. Dabei wird die Menüsprache auf "Englisch" umgeschaltet.

Ca. 60 Minuten nach der letzten Tastenbetätigung wird ein automatischer Rücksprung in die Messwertanzeige ausgelöst. Dabei gehen die noch nicht mit \([OK]-\) bestätigten Werte verloren.

6.3 Messwertanzeige

Mit der Taste \([-\,\rightarrow]-\) können Sie zwischen drei verschiedenen Anzeigemodi wechseln.

In der ersten Ansicht wird der ausgewählte Messwert in großer Schrift angezeigt.

In der zweiten Ansicht werden der ausgewählte Messwert und eine entsprechende Bargraph-Darstellung angezeigt.

In der dritten Ansicht werden der ausgewählte Messwert sowie ein zweiter auswählbarer Wert, z. B. der Temperaturwert, angezeigt.

Mit der Taste "OK" wechseln Sie bei der ersten Inbetriebnahme des Gerätes in das Auswahlmenü "Sprache".

Auswahl Sprache

Dieser Menüpunkt dient zur Auswahl der Landessprache für die weitere Parametrierung.

Mit der Taste \([-\,\rightarrow]-\) wählen Sie die gewünschte Sprache aus, "OK" bestätigen Sie die Auswahl und wechseln ins Hauptmenü.

Eine spätere Änderung der getroffenen Auswahl ist über den Menüpunkt "Inbetriebnahme - Display, Sprache des Menüs" jederzeit möglich.
6.4 Parametrierung - Schnellinbetriebnahme
Um den Sensor schnell und vereinfacht an die Messaufgabe anzupassen, wählen Sie im Startbild des Anzeige- und Bedienmoduls den Menüpunkt "Schnellinbetriebnahme".

Wählen Sie die einzelnen Schritte mit der [->]-Taste an.
Nach Abschluss des letzten Schrittes wird kurzzeitig "Schnellinbetriebnahme erfolgreich abgeschlossen" angezeigt.
Der Rücksprung in die Messwertanzeige erfolgt über die [->]- oder [ESC]-Tasten oder automatisch nach 3 s

Hinweis:
Eine Beschreibung der einzelnen Schritte finden Sie in der Kurz-Betriebsanleitung zum Sensor.
Die "Erweiterte Bedienung" finden Sie im nächsten Unterkapitel.

6.5 Parametrierung - Erweiterte Bedienung
Bei anwendungstechnisch anspruchsvollen Messstellen können Sie in der "Erweiterten Bedienung" weitergehende Einstellungen vornehmen.

Hauptmenü
Das Hauptmenü ist in fünf Bereiche mit folgender Funktionalität aufgeteilt:

- **Inbetriebnahme**: Einstellungen z. B. zu Messstellenname, Anwendung, Einheiten, Lagekorrektur, Abgleich, Signalausgang
- **Display**: Einstellungen z. B. zur Sprache, Messwertanzeige, Beleuchtung
- **Diagnose**: Informationen z. B. zu Gerätestatus, Schleppzeiger, Mess sicherheit, Simulation
- **Weitere Einstellungen**: PIN, Datum/Uhrzeit, Reset, Kopierfunktion
- **Info**: Gerätenname, Hard- und Softwareversion, Kalibrierdatum, Sensorsmerkmale

Hinweis:
Zur optimalen Einstellung der Messung sollten die einzelnen Unter menüpunkte im Hauptmenüpunkt "Inbetriebnahme" nacheinander
ausgewählt und mit den richtigen Parametern versehen werden. Halten Sie die Reihenfolge möglichst ein.

Die Untermenüpunkte sind nachfolgend beschrieben.

Inbetriebnahme - Messstellenname

Im Menüpunkt "Sensor-TAG" editieren Sie ein zwölfstelliges Messstellenkennzeichen.

Der Zeichenvorrat umfasst:
- Buchstaben von A … Z
- Zahlen von 0 … 9
- Sonderzeichen +, -, /, -

<table>
<thead>
<tr>
<th>Inbetriebnahme</th>
<th>Messstellenname</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anwendung</td>
<td>Sensor</td>
</tr>
<tr>
<td>Einheiten</td>
<td>Abgleich</td>
</tr>
<tr>
<td>Lagekorrektur</td>
<td></td>
</tr>
</tbody>
</table>

Inbetriebnahme - Anwendung

In diesem Menüpunkt aktivieren/deaktivieren Sie den Slave-Sensor für elektronischen Differenzdruck und wählen die Anwendung aus.

Wenn Sie keinen Slave-Sensor angeschlossen haben, bestätigen Sie dies durch "Deaktivieren".

Je nach Ihrer gewählten Anwendung sind deshalb in den folgenden Bedienschritten unterschiedliche Unterkapitel von Bedeutung. Dort finden Sie die einzelnen Bedienschritte.

<table>
<thead>
<tr>
<th>Inbetriebnahme</th>
<th>Anwendung</th>
<th>Slave für elektronischen Differenzdruck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messstellenname</td>
<td>Einheiten</td>
<td>Deaktiviert!</td>
</tr>
<tr>
<td>Abgleich</td>
<td></td>
<td>[Aktivieren]</td>
</tr>
</tbody>
</table>

Inbetriebnahme - Einheiten

In diesem Menüpunkt werden die Abgleicheinheiten des Gerätes festgelegt. Die getroffene Auswahl bestimmt die angezeigte Einheit in den Menüpunkten "Min.-Abgleich (Zero)" und "Max.-Abgleich (Span)".

<table>
<thead>
<tr>
<th>Abgleicheinheit</th>
<th>Abgleicheinheit</th>
<th>Abgleicheinheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>[m]</td>
<td>[bar]</td>
<td>[psi]</td>
</tr>
<tr>
<td>Temperatur-Einheit</td>
<td>°C</td>
<td>[mmHg]</td>
</tr>
</tbody>
</table>

WIKABetriebsanleitung - Prozessdrucktransmitter CPT-2x
Soll der Füllstand in einer Höheneinheit abgeglichen werden, so ist später beim Abgleich zusätzlich die Eingabe der Dichte des Mediums erforderlich.

Zusätzlich wird die Temperatureinheit des Gerätes festgelegt. Die getroffene Auswahl bestimmt die angezeigte Einheit in den Menüpunkten "Schleppzeiger Temperatur" und "in den Variablen des digitalen Ausgangssignals".

Temperatureinheit:

<table>
<thead>
<tr>
<th>Abgleichseinheit</th>
<th>Temperatureinheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>°C</td>
</tr>
<tr>
<td>°C</td>
<td>°F</td>
</tr>
</tbody>
</table>

Inbetriebnahme - Lagekorrektur

Soll bei der automatischen Lagekorrektur der aktuelle Messwert als Korrekturwert übernommen werden, darf dieser nicht durch Füllgutbedeckung oder einen statischen Druck verfälscht sein.

Bei der manuellen Lagekorrektur kann der Offsetwert durch den Anwender festgelegt werden. Wählen Sie hierzu die Funktion "Editieren" und geben Sie den gewünschten Wert ein.

Nach durchgeführter Lagekorrektur ist der aktuelle Messwert zu 0 korrigiert. Der Korrekturwert steht mit umgekehrten Vorzeichen als Offsetwert im Display.

Die Lagekorrektur lässt sich beliebig oft wiederholen. Überschreitet jedoch die Summe der Korrekturwerte 20 % des Nennmessbereichs, so ist keine Lagekorrektur mehr möglich.

Inbetriebnahme - Abgleich

Der CPT-2x misst unabhängig von der im Menüpunkt "Anwendung" gewählten Prozessgröße immer einen Druck. Um die gewählte Prozessgröße richtig ausgeben zu können, muss eine Zuweisung zu 0 % und 100 % des Ausgangssignals erfolgen (Abgleich).

Bei der Anwendung "Füllstand" wird zum Abgleich der hydrostatische Druck, z. B. bei vollem und leerem Behälter eingegeben. Siehe folgendes Beispiel:
6 In Betrieb nehmen mit dem Anzeige- und Bedienmodul

Abb. 34: Parametrierbeispiel Min.-/Max.-Abgleich Füllstandmessung

1. Min. Füllstand = 0 % entspricht 0,0 mbar
2. Max. Füllstand = 100 % entspricht 490,5 mbar

Sind diese Werte nicht bekannt, kann auch mit Füllständen von beispielsweise 10 % und 90 % abgeglichen werden. Anhand dieser Eingaben wird dann die eigentliche Füllhöhe errechnet.

Der aktuelle Füllstand spielt bei diesem Abgleich keine Rolle, der Min.-/Max.-Abgleich wird immer ohne Veränderung des Füllguts durchgeführt. Somit können diese Einstellungen bereits im Vorfeld durchgeführt werden, ohne dass das Gerät eingebaut sein muss.

Hinweis:
Werden die Einstellbereiche überschritten, so wird der eingegebene Wert nicht übernommen. Das Editieren kann mit [ESC] abgebrochen oder auf einen Wert innerhalb der Einstellbereiche korrigiert werden.

Für die übrigen Prozessgrößen wie z. B. Prozessdruck, Differenzdruck oder Durchfluss wird der Abgleich entsprechend durchgeführt.

Inbetriebnahme - Zero-Abgleich

Gehen Sie wie folgt vor:

Der Zero-Abgleich ist damit abgeschlossen.

Information:
Der Zero-Abgleich verschiebt den Wert des Span-Abgleichs. Die Messspanne, d. h. der Unterschiedsbetrag zwischen diesen Werten, bleibt dabei erhalten.

Für einen Abgleich mit Druck geben Sie einfach den unten auf dem Display angezeigten aktuellen Messwert ein.

Inbetriebnahme - Span-Abgleich

Gehen Sie wie folgt vor:

![Span-Abgleich](image)

![Span-Abgleich](image)

Für einen Abgleich mit Druck geben Sie einfach den unten auf dem Display angezeigten aktuellen Messwert ein.

Der span-Abgleich ist damit abgeschlossen.

Inbetriebnahme - Min.-Abgleich Füllstand

Gehen Sie wie folgt vor:

![Min.-Abgleich](image)

6 In Betrieb nehmen mit dem Anzeige- und Bedienmodul

4. Den zugehörigen Druckwert für den Min.-Füllstand eingeben (z. B. 0 mbar).

Der Min.-Abgleich ist damit abgeschlossen.
Für einen Abgleich mit Befüllung geben Sie einfach den unten auf dem Display angezeigten aktuellen Messwert ein.

Inbetriebnahme - Max.-Abgleich Füllstand

Gehen Sie wie folgt vor:
5. Einstellungen mit [OK] speichern

Der Max.-Abgleich ist damit abgeschlossen.
Für einen Abgleich mit Befüllung geben Sie einfach den unten auf dem Display angezeigten aktuellen Messwert ein.

Inbetriebnahme - Dämpfung

Zur Dämpfung von prozessbedingten Messwertschwankungen stellen Sie in diesem Menüpunkt eine Integrationszeit von 0 ... 999 s ein. Die Schrittwerte beträgt 0,1 s.

Die Werkseinstellung ist vom Sensortyp abhängig.

Inbetriebnahme - Linearisierung

6 In Betrieb nehmen mit dem Anzeige- und Bedienmodul

Inbetriebnahme - Stromausgang (Mode)
Im Menüpunkt "Stromausgang Mode" legen Sie die Ausgangskennlinie und das Verhalten des Stromausganges bei Störungen fest.

Die Werkseinstellung ist Ausgangskennlinie 4 ... 20 mA, der Störmoder = 3,6 mA.

Inbetriebnahme - Stromausgang (Min./Max.)
Im Menüpunkt "Stromausgang Min./Max." legen Sie das Verhalten des Stromausganges im Betrieb fest.

Die Werkseinstellung ist Min.-Strom 3,8 mA und Max.-Strom 20,5 mA.

Inbetriebnahme - Bedienung sperren/freigeben
Im Menüpunkt "Bedienung sperren/freigeben" schützen Sie die Sensorparameter vor unerwünschten oder unbeabsichtigten Änderungen.

Bei aktiver PIN sind nur noch folgende Bedienfunktionen ohne PIN-Eingabe möglich:

• Menüpunkte anwählen und Daten anzeigen
• Daten aus dem Sensor in das Anzeige- und Bedienmodul einlesen

Die Freigabe der Sensorbedienung ist zusätzlich in jedem beliebigen Menüpunkt durch Eingabe der PIN möglich.

VORSICHT:
Bei aktiver PIN ist die Bedienung über PACTware/DTM und andere Systeme ebenfalls gesperrt.

Display - Sprache
Dieser Menüpunkt ermöglicht Ihnen die Einstellung der gewünschten Landessprache.

Folgende Sprachen sind verfügbar:

• Deutsch
• Englisch
6 In Betrieb nehmen mit dem Anzeige- und Bedienmodul

- Französisch
- Spanisch
- Russisch
- Italienisch
- Niederländisch
- Portugiesisch
- Japanisch
- Chinesisch
- Polnisch
- Tschechisch
- Türkisch

Der CPT-2x ist im Auslieferungszustand auf Englisch eingestellt.

Display - Anzeigewert 1 und 2

In diesem Menüpunkt definieren Sie, welcher Messwert auf dem Display angezeigt wird.

Die Werkseinstellung für den Anzeigewert ist "Lin. Prozent".

Display - Anzeigeformat 1 und 2

In diesem Menüpunkt definieren Sie, mit wievielen Nachkommastellen der Messwert auf dem Display angezeigt wird.

Die Werkseinstellung für das Anzeigeformat ist "Automatisch".

Display - Beleuchtung

Das Anzeige- und Bedienmodul verfügt über eine Hintergrundbeleuchtung für das Display. In diesem Menüpunkt schalten Sie die Beleuchtung ein. Die erforderliche Höhe der Betriebsspannung finden Sie in Kapitel "Technische Daten".

Im Auslieferungszustand ist die Beleuchtung eingeschaltet.

Diagnose - Gerätestatus

In diesem Menüpunkt wird der Gerätestatus angezeigt.

Im Fehlerfall wird der Fehlercode, z. B. F017, die Fehlerbeschreibung, z. B. "Abgleichspanne zu klein" und ein vierstellige Zahl für Servicezwecke angezeigt. Die Fehlercodes mit Beschreibung, Ursache sowie Beseitigung finden Sie in Kapitel "Asset Management".
6 In Betrieb nehmen mit dem Anzeige- und Bedienmodul

Diagnose - Schleppzeiger Druck

Im Sensor werden der jeweils minimale und maximale Messwert gespeichert. Im Menüpunkt "Schleppzeiger Druck" werden die beiden Werte angezeigt.

In einem weiteren Fenster können Sie für die Schleppzeigerwerte separat ein Reset durchführen.

Diagnose - Schleppzeiger Temperatur

Im Sensor werden der jeweils minimale und maximale Messwert der Messzellen- und Elektroniktemperatur gespeichert. Im Menüpunkt "Schleppzeiger Temperatur" werden die beiden Werte angezeigt.

In einem weiteren Fenster können Sie für beide Schleppzeigerwerte separat ein Reset durchführen.

Diagnose - Simulation

In diesem Menüpunkt simulieren Sie Messwerte. Damit lässt sich der Signalweg, z. B. über nachgeschaltete Anzeigegeräte oder die Eingangskarte des Leitsystems testen.

Wählen Sie die gewünschte Simulationsgröße aus und stellen Sie den gewünschten Zahlenwert ein.

Um die Simulation zu deaktivieren, drücken Sie die [ESC]-Taste und bestätigen Sie die Meldung "Simulation deaktivieren" mit der [OK]-Taste.

Vorsicht:

Bei laufender Simulation wird der simulierte Wert als 4 ... 20 mA-Stromwert und bei Geräten 4 ... 20 mA/HART zusätzlich als digitales HART-Signal ausgegeben. Im Rahmen der Asset-Management-Funktion erfolgt die Statusmeldung "Maintenance".

Hinweis:

Der Sensor beendet die Simulation ohne manuelle Deaktivierung automatisch nach 60 Minuten.

Weitere Einstellungen - Datum/Uhrzeit

In diesem Menüpunkt wird die interne Uhr des Sensors eingestellt. Es erfolgt keine Umstellung auf Sommer-/Winterzeit.
Bei einem Reset werden bestimmte vom Anwender durchgeführte Parametereinstellungen zurückgesetzt.

Folgende Resetfunktionen stehen zur Verfügung:

Auslieferungszustand: Wiederherstellen der Parametereinstellungen zum Zeitpunkt der Auslieferung werkseitig inkl. der auftragspezifischen Einstellungen. Eine frei programmierte Linearisierungskurve sowie der Messwertspeicher werden gelöscht.

Basiseinstellungen: Zurückssetzen der Parametereinstellungen inkl. Spezialparameter auf die Defaultwerte des jeweiligen Gerätes. Eine programmierte Linearisierungskurve sowie der Messwertspeicher werden gelöscht.

Die folgende Tabelle zeigt die Defaultwerte des Gerätes. Je nach Geräteausführung oder Anwendung sind nicht alle Menüpunkte verfügbar bzw. unterschiedlich belegt:

<table>
<thead>
<tr>
<th>Menüpunkt</th>
<th>Parameter</th>
<th>Defaultwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messstellenname</td>
<td></td>
<td>Sensor</td>
</tr>
<tr>
<td>Anwendung</td>
<td>Anwendung</td>
<td>Füllstand</td>
</tr>
<tr>
<td></td>
<td>Slave für elektronischen</td>
<td>Deaktiviert</td>
</tr>
<tr>
<td></td>
<td>Differenzdruck</td>
<td></td>
</tr>
<tr>
<td>Einheiten</td>
<td>Abgleicheinheit</td>
<td>mbar (bei Nennmessbereichen ≤ 400 mbar)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bar (bei Nennmessbereichen ≥ 1 bar)</td>
</tr>
<tr>
<td></td>
<td>Temperatureinheit</td>
<td>°C</td>
</tr>
<tr>
<td>Lagekorrektur</td>
<td></td>
<td>0,00 bar</td>
</tr>
<tr>
<td>Abgleich</td>
<td>Zero-/Min.-Abgleich</td>
<td>0,00 bar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,00 %</td>
</tr>
<tr>
<td></td>
<td>Span-/Max.-Abgleich</td>
<td>Nennmessbereich in bar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100,00 %</td>
</tr>
<tr>
<td>Dämpfung</td>
<td>Integrationszeit</td>
<td>1 s</td>
</tr>
<tr>
<td>Linearisierung</td>
<td></td>
<td>Linear</td>
</tr>
</tbody>
</table>
In Betrieb nehmen mit dem Anzeige- und Bedienmodul

<table>
<thead>
<tr>
<th>Menüpunkt</th>
<th>Parameter</th>
<th>Defaultwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stromausgang</td>
<td>Stromausgang - Mode</td>
<td>Ausgangskennlinie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 ... 20 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verhalten bei Störung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤ 3,6 mA</td>
</tr>
<tr>
<td></td>
<td>Stromausgang - Min./Max.</td>
<td>3,8 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20,5 mA</td>
</tr>
<tr>
<td>Bedienung sperren</td>
<td></td>
<td>Freigegeben</td>
</tr>
</tbody>
</table>

Reset - Display

<table>
<thead>
<tr>
<th>Menüpunkt</th>
<th>Defaultwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprache des Menüs</td>
<td>Ausgewählte Sprache</td>
</tr>
<tr>
<td>Anzeigewert 1</td>
<td>Stromausgang in %</td>
</tr>
<tr>
<td>Anzeigewert 2</td>
<td>Keramische Messzelle: Messzellentemperatur in °C</td>
</tr>
<tr>
<td></td>
<td>Metallische Messzelle: Elektroniktemperatur in °C</td>
</tr>
<tr>
<td>Anzeigeformat 1 und 2</td>
<td>Anzahl Nachkommastellen automatisch</td>
</tr>
<tr>
<td>Beleuchtung</td>
<td>Eingeschaltet</td>
</tr>
</tbody>
</table>

Reset - Diagnose

<table>
<thead>
<tr>
<th>Menüpunkt</th>
<th>Parameter</th>
<th>Defaultwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerätestatus</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Schleppzeiger</td>
<td>Druck</td>
<td>Aktueller Messwert</td>
</tr>
<tr>
<td></td>
<td>Temperatur</td>
<td>Aktuelle Temperaturwerte Messzelle, Elektronik</td>
</tr>
<tr>
<td>Simulation</td>
<td></td>
<td>Prozessdruck</td>
</tr>
</tbody>
</table>

Reset - Weitere Einstellungen

<table>
<thead>
<tr>
<th>Menüpunkt</th>
<th>Parameter</th>
<th>Defaultwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN</td>
<td></td>
<td>0000</td>
</tr>
<tr>
<td>Datum/Uhrzeit</td>
<td></td>
<td>Aktuelles Datum/Aktuelle Uhrzeit</td>
</tr>
<tr>
<td>Geräteeinstellungen kopiieren</td>
<td></td>
<td>Kein Reset</td>
</tr>
<tr>
<td>Spezialparameter</td>
<td>Skalierungsgröße</td>
<td>Volumen in l</td>
</tr>
<tr>
<td></td>
<td>Skalierungsformat</td>
<td>0 % entspricht 0 l</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 % entspricht 0 l</td>
</tr>
<tr>
<td>Stromausgang</td>
<td>Stromausgang - Größe</td>
<td>Lin.-Prozent - Füllstand</td>
</tr>
<tr>
<td></td>
<td>Stromausgang - Abgleich</td>
<td>0 ... 100 % entspricht 4 ... 20 mA</td>
</tr>
<tr>
<td>HART-Mode</td>
<td></td>
<td>Adresse 0</td>
</tr>
</tbody>
</table>
6 In Betrieb nehmen mit dem Anzeige- und Bedienmodul

Weitere Einstellungen - Geräteneinstellungen kopieren
Mit dieser Funktion werden Geräteneinstellungen kopiert. Folgende Funktionen stehen zur Verfügung:

- Aus Sensor lesen: Daten aus dem Sensor auslesen und in das Anzeige- und Bedienmodul speichern
- In Sensor schreiben: Daten aus dem Anzeige- und Bedienmodul zurück in den Sensor speichern

Folgende Daten bzw. Einstellungen der Bedienung des Anzeige- und Bedienmoduls werden hierbei gespeichert:

- Alle Daten der Menüs "Inbetriebnahme" und "Display"
- Im Menü "Weitere Einstellungen" die Punkte "Reset, Datum/Uhrzeit"
- Die frei programmierte Linearisierungskurve

Die kopierten Daten werden in einem EEPROM-Speicher im Anzeige- und Bedienmodul dauerhaft gespeichert und bleiben auch bei Spannungsausfall erhalten. Sie können von dort aus in einen oder mehrere Sensoren geschrieben oder zur Datensicherung für einen eventuellen Elektroniktausch aufbewahrt werden.

Hinweis:
Vor dem Speichern der Daten in den Sensor wird zur Sicherheit geprüft, ob die Daten zum Sensor passen. Dabei werden der Sensor- und der Zielsensor angezeigt. Falls die Daten nicht passen, so erfolgt eine Fehlermeldung bzw. wird die Funktion blockiert. Das Speichern erfolgt erst nach Freigabe.

Weitere Einstellungen - Spezialparameter
In diesem Menüpunkt gelangen Sie in einen geschützten Bereich, um Spezialparameter einzugeben. In seltenen Fällen können einzelne Parameter verändert werden, um den Sensor an besondere Anforderungen anzupassen.
Ändern Sie die Einstellungen der Spezialparameter nur nach Rückfrage mit unseren Servicemitarbeitern.

Weitere Einstellungen - Skalierung (1)
Im Menüpunkt "Skalierung (1)" definieren Sie die Skalierungsgröße und die Skalierungseinheit für den Füllstandwert auf dem Display, z. B. Volumen in l.

44 WIKA Betriebsanleitung - Prozessdrucktransmitter CPT-2x
6 In Betrieb nehmen mit dem Anzeige- und Bedienmodul

Weitere Einstellungen - Skalierung (2)

Im Menüpunkt "Skalierung (2)" definieren Sie das Skalierungsformat auf dem Display und die Skalierung des Füllstand-Messwertes für 0 % und 100 %.

| Weitere Einstellungen | Skalierung | Skalierung
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset</td>
<td>Skalierungsgröße</td>
<td>100 % = 100</td>
</tr>
<tr>
<td>Geräteinst. kopieren</td>
<td>Skalierungsformat</td>
<td>0 % = 0</td>
</tr>
<tr>
<td>Skalierung</td>
<td>Stromausgang</td>
<td>1</td>
</tr>
<tr>
<td>Stromausgang</td>
<td>HART-Betriebsart</td>
<td>1</td>
</tr>
</tbody>
</table>

Weitere Einstellungen - Stromausgang (Größe)

Im Menüpunkt "Stromausgang Größe" legen Sie fest, welche Messgröße über den Stromausgang ausgegeben wird.

Weitere Einstellungen	Stromausgang	Stromausgang Größe
Spezialparameter	Stromausgang	Prozentsatz
Skalierung	Größenabgleich	Skalierung
Stromausgang	Stromausgang	Lin. Prozentsatz
HART Mode	Messzellenemp.	Messzellenemp.
	Elektroniktemperatur	Elektroniktemperatur

Weitere Einstellungen - Stromausgang (Abgleich)

Abhängig von der gewählten Messgröße ordnen Sie im Menüpunkt "Stromausgang Abgleich" zu, auf welche Messwerte sich 4 mA (0 %) und 20 mA (100 %) des Stromausganges beziehen.

Weitere Einstellungen	Stromausgang	Stromausgang Abgleich
Spezialparameter	Stromausgang	100 % = 100.00
Skalierung	Größenabgleich	0 % = 0.00
Stromausgang	Stromausgang	Lin. Prozentsatz
HART Mode	Messzellenemp.	Messzellenemp.
	Elektroniktemperatur	Elektroniktemperatur

| Wird als Messgröße die Messzellentemperatur gewählt, so beziehen sich z. B. 0 °C auf 4 mA und 100 °C auf 20 mA.

Stromausgang Größe	Stromausgang Abgleich
Skaliert	100 % = 100.00
Lin. Prozentsatz	0 % = 0.00
Messzellenemp.	°C
Elektroniktemperatur	°C

Weitere Einstellungen - HART-Mode

Der Sensor bietet die HART-Betriebsarten "Analoger Stromausgang" und "Fixer Strom (4 mA)". In diesem Menüpunkt legen Sie die HART-Betriebsart fest und geben die Adresse bei Multidrop-Betrieb an.

In der Betriebsart "Fixer Stromausgang" können bis zu 63 Sensoren an einer Zweidrahtleitung betrieben werden (Multidrop-Betrieb). Jedem Sensor muss eine Adresse zwischen 0 und 63 zugeordnet werden.

Wenn Sie die Funktion "Analoger Stromausgang" auswählen und gleichzeitig eine Adressnummer eingeben, können Sie auch im Multidrop-Betrieb ein 4 ... 20 mA-Signal ausgeben.

Bei der Betriebsart "Fixer Strom (4 mA)" wird unabhängig vom aktuellen Füllstand ein festes 4 mA-Signal ausgegeben.

| Weitere Einstellungen | HART Adresse | Adresse
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Skalierung</td>
<td>Stromausgang</td>
<td>00</td>
</tr>
<tr>
<td>Stromausgang</td>
<td>HART-Betriebsart</td>
<td>0</td>
</tr>
<tr>
<td>Spezialparameter</td>
<td>Loop current node</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Analog Stromausgang</td>
<td></td>
</tr>
</tbody>
</table>
6 In Betrieb nehmen mit dem Anzeige- und Bedienmodul

Info - Gerätenamen
In diesem Menüpunkt lesen Sie den Gerätenamen und die Geräteseriennummer aus:

Info - Geräteausführung
In diesem Menüpunkt wird die Hard- und Softwareversion des Sensors angezeigt.

Info - Werkskalibrierdatum
In diesem Menüpunkt wird das Datum der werkseitigen Kalibrierung des Sensors sowie das Datum der letzten Änderung von Sensorparametern über das Anzeige- und Bedienmodul bzw. über den PC angezeigt.

Info - Sensormerkmale
In diesem Menüpunkt werden Merkmale des Sensors wie Zulassung, Prozessanschluss, Dichtung, Messbereich, Elektronik, Gehäuse und weitere angezeigt.

6.6 **Sicherung der Parametrierdaten**

Auf Papier
Es wird empfohlen, die eingestellten Daten zu notieren, z. B. in dieser Betriebsanleitung und anschließend zu archivieren. Sie stehen damit für mehrfache Nutzung bzw. für Servicezwecke zur Verfügung.

Im Anzeige- und Bedienmodul
Ist das Gerät mit einem Anzeige- und Bedienmodul ausgestattet, so können die Parametrierdaten darin gespeichert werden. Die Vorgehensweise wird im Menüpunkt "Geräteeinstellungen kopieren" beschrieben.
7 In Betrieb nehmen mit PACTware

7.1 Den PC anschließen

Abb. 35: Anschluss des PCs an die Signalleitung
1 RS232-Anschluss
2 HART-Widerstand 250 Ω
3 CPT-2x

Erforderliche Komponenten:
- CPT-2x
- PC mit PACTware und passendem WIKA-DTM
- HART-Modem
- HART-Widerstand ca. 250 Ω
- Netzteil

 Hinweis:
Bei Speisegeräten mit integriertem HART-Widerstand (Innenwiderstand ca. 250 Ω) ist kein zusätzlicher externer Widerstand erforderlich. Marktübliche Ex-Speisetrenner sind meist mit einem hinreichend großen Strombegrenzungswiderstand ausgestattet. In diesen Fällen kann das Modem parallel zur 4 … 20 mA-Leitung angeschlossen werden.

7.2 Parametrierung

Die weitere Inbetriebnahme mit weiterführender Beschreibung ist in der Online-Hilfe von PACTware und den DTMs enthalten.

 Hinweis:
Bitte beachten Sie, dass zur Inbetriebnahme des Typ CPT-2x die DTM Collection in der aktuellen Version benutzt werden muss.

Die jeweils aktuelle DTM Collection und PACTware-Version kann kostenfrei über das Internet heruntergeladen werden.
7.3 Sicherung der Parametrierdaten
Es wird empfohlen, die Parametrierdaten über PACTware zu
dokumentieren bzw. zu speichern. Sie stehen damit für mehrfache
Nutzung bzw. für Servicezwecke zur Verfügung.
8 Diagnose, Asset Management und Service

8.1 Instandhalten

Bei bestimmungsgemäßer Verwendung ist im Normalbetrieb keine besondere Wartung erforderlich.

Vorkehrungen gegen Anhaftungen

Bei manchen Anwendungen können Füllgutanhaftungen an der Membran das Messergebnis beeinflussen. Treffen Sie deshalb je nach Sensor und Anwendung Vorkehrungen, um starke Anhaftungen und insbesondere Aushärtungen zu vermeiden.

Reinigung

Die Reinigung trägt dazu bei, dass Typschild und Markierungen auf dem Gerät sichtbar sind. Beachten Sie hierzu folgendes:

- Nur Reinigungsmittel verwenden, die Gehäuse, Typschild und Dichtungen nicht angreifen
- Nur Reinigungsmethoden einsetzen, die der Geräteschutzart entsprechen

8.2 Reinigen - aseptischer Anschluss mit Nutüberwurfmutter

Übersicht

Der aseptische Anschluss mit Nutüberwurfmutter lässt sich zerlegen und die Membran reinigen.

Die folgende Grafik zeigt den Aufbau:

![Abb. 36: CPT-2x, Aufbau aseptischer Anschluss mit Nutüberwurfmutter]

- 1 Sechskant
- 2 Nutüberwurfmutter
- 3 Prozessanschluss
- 4 Prozessbaugruppe
- 5 Formdichtung für Messzelle
- 6 O-Ring-Dichtung für Prozessanschluss
- 7 Membran

Ablauf

Gehen Sie dazu folgendermaßen vor:

1. Nutüberwurfmutter lösen und Druckmessumformer aus dem Einschweißstutzen herausnehmen
2. O-Ring-Dichtung für Prozessanschluss herausnehmen
3. Membran mit Messingbürste und Reinigungsmittel säubern
4. Sechskant lösen und Prozessbaugruppe aus dem Prozessanschluss herausnehmen
5. Formdichtung für Messzelle herausnehmen und durch neue ersetzen
6. Prozessbaugruppe in Prozessanschluss einbauen, Sechskant festziehen (Schlüsselweite siehe Kapitel "Maße", max. Anzugsmoment siehe Kapitel "Technische Daten")
7. Neue O-Ring-Dichtung für Prozessanschluss einsetzen
8. Druckmessumformer in den Einschweißstutzen einbauen, Nut überwurfmutter anziehen

Die Reinigung ist damit abgeschlossen. Der Druckmessumformer ist direkt betriebsbereit, ein Neuabgleich ist nicht erforderlich.

8.3 Diagnosespeicher
Das Gerät verfügt über mehrere Speicher, die zu Diagnosezwecken zur Verfügung stehen. Die Daten bleiben auch bei Spannungsunterbrechung erhalten.

Messwertspeicher
Bis zu 100.000 Messwerte können im Sensor in einem Ringspeicher gespeichert werden. Jeder Eintrag enthält Datum/Uhrzeit sowie den jeweiligen Messwert.
Speicherbare Werte sind je nach Geräteausführung z. B.:
- Füllstand
- Prozessdruck
- Differenzdruck
- Statischer Druck
- Prozentwert
- Skalierte Werte
- Stromausgang
- Lin.-Prozent
- Messzellentemperatur
- Elektroniktemperatur

Der Messwertspeicher ist im Auslieferungszustand aktiv und speichert alle 10 s den Druckwert und die Messzellentemperatur, bei elektronischem Differenzdruck auch den statischen Druck.

Ereignisspeicher
Bis zu 500 Ereignisse werden mit Zeitstempel automatisch im Sensor nicht löscharbar gespeichert. Jeder Eintrag enthält Datum/Uhrzeit, Ereignistyp, Ereignisbeschreibung und Wert. Ereignistypen sind z. B.:
- Änderung eines Parameters
- Ein- und Ausschaltzeitpunkte
- Statusmeldungen (nach NE 107)
- Fehlermeldungen (nach NE 107)

Über einen PC mit PACTware/DTM bzw. das Leitsystem mit EDD werden die Daten ausgelesen.
8.4 Asset-Management-Funktion

Statusmeldungen

Die Statusmeldungen sind in folgende Kategorien unterteilt:

- Ausfall
- Funktionskontrolle
- Außerhalb der Spezifikation
- Wartungsbedarf

und durch Piktogramme verdeutlicht:

Abb. 37: Piktogramme der Statusmeldungen

1. Ausfall (Failure) - rot
2. Außerhalb der Spezifikation (Out of specification) - gelb
3. Funktionskontrolle (Function check) - orange
4. Wartungsbedarf (Maintenance) - blau

Ausfall (Failure): Aufgrund einer erkannten Funktionsstörung im Gerät gibt das Gerät eine Störmeldung aus.

Diese Statusmeldung ist immer aktiv. Eine Deaktivierung durch den Anwender ist nicht möglich.

Funktionskontrolle (Function check): Am Gerät wird gearbeitet, der Messwert ist vorübergehend ungültig (z. B. während der Simulation).

Diese Statusmeldung ist per Default inaktiv. Eine Aktivierung durch den Anwender über PACTware/DTM oder EDD ist möglich.

Außerhalb der Spezifikation (Out of specification): Der Messwert ist unsicher, da die Gerätespezifikation überschritten ist (z. B. Elektroniktemperatur).

Diese Statusmeldung ist per Default inaktiv. Eine Aktivierung durch den Anwender über PACTware/DTM oder EDD ist möglich.

Diese Statusmeldung ist per Default inaktiv. Eine Aktivierung durch den Anwender über PACTware/DTM oder EDD ist möglich.
Failure

<table>
<thead>
<tr>
<th>Code</th>
<th>Ursache</th>
<th>Beseitigung</th>
<th>DevSpec State in CMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>F013</td>
<td>Kein gültiger Messwert vorhanden</td>
<td>• Überdruck oder Unterdruck
• Messzelle defekt</td>
<td>Bit 0 von Byte 0 … 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Messzelle austauschen
• Gerät zur Reparatur einsenden</td>
<td></td>
</tr>
<tr>
<td>F017</td>
<td>Abgleichspanne zu klein</td>
<td>• Abgleich nicht innerhalb der Spezifikation</td>
<td>Bit 1 von Byte 0 … 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Abgleich entsprechend den Grenzwerten ändern</td>
<td></td>
</tr>
<tr>
<td>F025</td>
<td>Fehler in der Linearisierungstabelle</td>
<td>• Stützstellen sind nicht stetig steigend, z. B. unlogische Wertepaare</td>
<td>Bit 2 von Byte 0 … 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Linearisierungstabelle prüfen
• Tabelle löschen/neu anlegen</td>
<td></td>
</tr>
<tr>
<td>F036</td>
<td>Keine lauffähige Sensorsoftware</td>
<td>• Fehlgeschlagenes oder abgebrochenes Softwareupdate</td>
<td>Bit 3 von Byte 0 … 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Softwareupdate wiederholen
• Elektronikausführung prüfen
• Elektronik austauschen
• Gerät zur Reparatur einsenden</td>
<td></td>
</tr>
<tr>
<td>F040</td>
<td>Fehler in der Elektronik</td>
<td>• Hardwaredefekt</td>
<td>Bit 4 von Byte 0 … 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Elektronik austauschen
• Gerät zur Reparatur einsenden</td>
<td></td>
</tr>
<tr>
<td>F041</td>
<td>Kommunikationsfehler</td>
<td>• Keine Verbindung zur Sensor-elektronik</td>
<td>Bit 5 von Byte 0 … 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Verbindung zwischen Sensor- und Hauptelektronik überprüfen (bei separater Ausführung)</td>
<td></td>
</tr>
<tr>
<td>F042</td>
<td>Kommunikationsfehler Slave</td>
<td>• Keine Verbindung zum Slave</td>
<td>Bit 15 von Byte 0 … 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Verbindung zwischen Master und Slave überprüfen</td>
<td></td>
</tr>
<tr>
<td>F080</td>
<td>Allgemeiner Softwarefehler</td>
<td>• Allgemeiner Softwarefehler</td>
<td>Bit 6 von Byte 0 … 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Betriebsspannung kurzzeitig trennen</td>
<td></td>
</tr>
<tr>
<td>F105</td>
<td>Messwert wird ermittelt</td>
<td>• Gerät befindet sich noch in der Einschaltpause, der Messwert konnte noch nicht ermittelt werden</td>
<td>Bit 7 von Byte 0 … 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ende der Einschaltpause abwarten</td>
<td></td>
</tr>
<tr>
<td>F113</td>
<td>Kommunikationsfehler</td>
<td>• Fehler in der internen Gerätekommunikation</td>
<td>Bit 8 von Byte 0 … 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Betriebsspannung kurzzeitig trennen
• Gerät zur Reparatur einsenden</td>
<td></td>
</tr>
<tr>
<td>F260</td>
<td>Fehler in der Kalibrierung</td>
<td>• Fehler in der im Werk durchgeführten Kalibrierung
• Fehler im EEPROM</td>
<td>Bit 10 von Byte 0 … 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Elektronik austauschen
• Gerät zur Reparatur einsenden</td>
<td></td>
</tr>
<tr>
<td>F261</td>
<td>Fehler in der Geräteeinstellung</td>
<td>• Fehler bei der Inbetriebnahme
• Fehler beim Ausführen eines Resets</td>
<td>Bit 11 von Byte 0 … 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inbetriebnahme wiederholen
• Reset wiederholen</td>
<td></td>
</tr>
</tbody>
</table>
Code Textmeldung

<table>
<thead>
<tr>
<th>Code</th>
<th>Textmeldung</th>
<th>Ursache</th>
<th>Beseitigung</th>
<th>DevSpec State in CMD 48</th>
</tr>
</thead>
<tbody>
<tr>
<td>F264</td>
<td>Einbau-/Inbetriebnahme-</td>
<td>¬ Inkonsistente Einstellungen (z. B.: Distanz, Abgleich-</td>
<td>¬ Einstellungen ändern</td>
<td>Bit 12 von Byte 0 … 5</td>
</tr>
<tr>
<td></td>
<td>fehler</td>
<td>einheiten bei Anwendung Prozessdruck) für ausgewählte</td>
<td>¬ Angeschlossene Sensorkonfiguration oder Anwendung ändern</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anwendung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>¬ Ungültige Sensor-Konfiguration (z. B.: Anwendung elektro-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>nischer Differenzdruck mit angeschlossener Differenz-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>druckmesszelle)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F265</td>
<td>Messfunktion ge-</td>
<td>¬ Sensor führt keine Messung mehr durch</td>
<td>¬ Reset durchführen</td>
<td>Bit 13 von Byte 0 … 5</td>
</tr>
<tr>
<td></td>
<td>stört</td>
<td></td>
<td>¬ Betriebsspannung kurzzeitig trennen</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 5: Fehlercodes und Textmeldungen, Hinweise zur Ursache un Beseitigung

Function check

<table>
<thead>
<tr>
<th>Code</th>
<th>Textmeldung</th>
<th>Ursache</th>
<th>Beseitigung</th>
<th>DevSpec State in CMD 48</th>
</tr>
</thead>
<tbody>
<tr>
<td>C700</td>
<td>Simulation aktiv</td>
<td>¬ Eine Simulation ist aktiv</td>
<td>¬ Simulation beenden</td>
<td>"Simulation Active" in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>¬ Automatikisches Ende nach 60 Minuten abwarten</td>
<td>"Standardized Status 0"</td>
</tr>
</tbody>
</table>

Tab. 6: Fehlercodes und Textmeldungen, Hinweise zur Ursache un Beseitigung

Out of specification

<table>
<thead>
<tr>
<th>Code</th>
<th>Textmeldung</th>
<th>Ursache</th>
<th>Beseitigung</th>
<th>DevSpec State in CMD 48</th>
</tr>
</thead>
<tbody>
<tr>
<td>S600</td>
<td>Unzulässige Elektroniktemperatur</td>
<td>¬ Temperatur der Elektronik im nicht spezifizierten Bereich</td>
<td>¬ Umgebungstemperatur prüfen</td>
<td>Bit 23-0 von Byte 14 … 24</td>
</tr>
<tr>
<td>S603</td>
<td>Unzulässige Betriebsspannung</td>
<td>¬ Betriebsspannung unterhalb des spezifizierten Bereich</td>
<td>¬ Elektrischen Anschluss prüfen</td>
<td>Bit 23-1 von Byte 14 … 24</td>
</tr>
<tr>
<td>S605</td>
<td>Unzulässiger Druckwert</td>
<td>¬ Gemessener Prozessdruck unterhalb bzw. oberhalb des Einstellbereiches</td>
<td>¬ Nennmessbereich des Gerätes prüfen</td>
<td>Bit 23-2 von Byte 14 … 24</td>
</tr>
</tbody>
</table>

Tab. 7: Fehlercodes und Textmeldungen, Hinweise zur Ursache un Beseitigung

Maintenance

<table>
<thead>
<tr>
<th>Code</th>
<th>Textmeldung</th>
<th>Ursache</th>
<th>Beseitigung</th>
<th>DevSpec State in CMD 48</th>
</tr>
</thead>
<tbody>
<tr>
<td>M500</td>
<td>Fehler im Auslieferungszustand</td>
<td>¬ Beim Reset auf Auslieferungszustand konnten die Daten nicht wiederhergestellt werden</td>
<td>¬ Reset wiederholen</td>
<td>Bit 0 von Byte 14 … 24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>¬ XML-Datei mit Sensordaten in Sensor laden</td>
<td></td>
</tr>
</tbody>
</table>
8.5 Störungen beseitigen

Es liegt in der Verantwortung des Anlagenbetreibers, geeignete Maßnahmen zur Beseitigung aufgetretener Störungen zu ergreifen.

Vorgehensweise zur Störungsbeseitigung

Die ersten Maßnahmen sind:
- Auswertung von Fehlermeldungen über das Bediengerät
- Überprüfung des Ausgangssignals
- Behandlung von Messfehlern

Weitere umfassende Diagnosemöglichkeiten bietet Ihnen ein PC mit der Software PACTware und dem passenden DTM. In vielen Fällen lassen sich die Ursachen auf diesem Wege feststellen und die Störungen so beseitigen.

4 ... 20 mA-Signal überprüfen

Schließen Sie gemäß Anschlussplan ein Multimeter im passenden Messbereich an. Die folgende Tabelle beschreibt mögliche Fehler im Stromsignal und hilft bei der Beseitigung:

<table>
<thead>
<tr>
<th>Fehler</th>
<th>Ursache</th>
<th>Beseitigung</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 ... 20 mA-Signal nicht stabil</td>
<td>Messgröße schwankt</td>
<td>Dämpfung einstellen</td>
</tr>
<tr>
<td>4 ... 20 mA-Signal fehlt</td>
<td>Elektrischer Anschluss fehlerhaft</td>
<td>Anschluss prüfen, ggf. korrigieren</td>
</tr>
<tr>
<td></td>
<td>Spannungsversorgung fehlt</td>
<td>Leitungen auf Unterbrechung prüfen, ggf. reparieren</td>
</tr>
<tr>
<td></td>
<td>Betriebsspannung zu niedrig, Bürdenwiderstand zu hoch</td>
<td>Prüfen, ggf. anpassen</td>
</tr>
<tr>
<td>Stromsignal größer 22 mA, kleiner 3,6 mA</td>
<td>Sensorelektronik defekt</td>
<td>Gerät austauschen bzw. zur Reparatur einsenden</td>
</tr>
</tbody>
</table>

Verhalten nach Störungs- beseitigung

Je nach Störungsursache und getroffenen Maßnahmen sind ggf. die in Kapitel "In Betrieb nehmen" beschriebenen Handlungsschritte
erneut zu durchlaufen bzw. auf Plausibilität und Vollständigkeit zu überprüfen.

8.6 Prozessbaugruppe bei Ausführung IP 68 (25 bar) tauschen

Bei der Ausführung IP 68 (25 bar) kann der Anwender die Prozessbaugruppe vor Ort tauschen. Anschlusskabel und externes Gehäuse können beibehalten werden.

Erforderliches Werkzeug:
- Innensechskantschlüssel, Größe 2

Vorsicht:
Der Austausch darf nur im spannungsfreien Zustand erfolgen.

Bei Ex-Anwendungen darf nur ein Austauschteil mit entsprechender Ex-Zulassung eingesetzt werden.

Vorsicht:
Beim Austausch die Innenseite der Teile vor Schmutz und Feuchtigkeit schützen.

Gehen Sie zum Tausch wie folgt vor:
1. Fixierschraube mit Innensechskantschlüssel lösen
2. Kabelbaugruppe vorsichtig von der Prozessbaugruppe abziehen

![Abb. 38: CPT-2x in IP 68-Ausführung 25 bar und seitlichem Kabelabgang, externes Gehäuse](image)

1. Prozessbaugruppe
2. Steckverbinder
3. Fixierschraube
4. Kabelbaugruppe
5. Anschlusskabel
6. Externes Gehäuse

3. Steckverbinder lösen
4. Neue Prozessbaugruppe an die Messstelle montieren
5. Steckverbinder wieder zusammenfügen
6. Kabelbaugruppe auf Prozessbaugruppe stecken und in gewünschte Position drehen
7. Fixierschraube mit Innensechskantschlüssel festdrehen
8.7 Das Gerät reparieren

Hinweise zur Rücksendung befinden sich in der Rubrik "Service" auf unserer lokalen Internetseite.

Sollte eine Reparatur erforderlich sein, gehen Sie folgendermaßen vor:

- Für jedes Gerät ein Formular ausfüllen
- Eine evtl. Kontamination angeben
- Das Gerät reinigen und bruchsicher verpacken
- Dem Gerät das ausgefüllte Formular und eventuell ein Sicherheitsdatenblatt beilegen

Der Austausch ist damit abgeschlossen.
9 Ausbauen

9.1 Ausbauschritte

Warnung:
Achten Sie vor dem Ausbauen auf gefährliche Prozessbedingungen wie z. B. Druck im Behälter oder Rohrleitung, hohe Temperaturen, aggressive oder toxische Füllgüter etc.

Beachten Sie die Kapitel "Montieren" und "An die Spannungsversorgung anschließen" und führen Sie die dort angegebenen Schritte sinngemäß umgekehrt durch.

9.2 Entsorgen

Das Gerät besteht aus Werkstoffen, die von darauf spezialisierten Recyclingbetrieben wieder verwertet werden können. Wir haben hierzu die Elektronik leicht trennbar gestaltet und verwenden recyclebare Werkstoffe.

Eine fachgerechte Entsorgung vermeidet negative Auswirkungen auf Mensch und Umwelt und ermöglicht eine Wiederverwendung von wertvollen Rohstoffen.

Werkstoffe: siehe Kapitel "Technische Daten"

Sollten Sie keine Möglichkeit haben, das Altgerät fachgerecht zu entsorgen, so sprechen Sie mit uns über Rücknahme und Entsorgung.

WEEE-Richtlinie 2012/19/EU

10 Anhang

10.1 Technische Daten

Hinweis für zugelassene Geräte

Werkstoffe und Gewichte

Werkstoffe, medienberührt

<table>
<thead>
<tr>
<th>Werkstück</th>
<th>Werkstoffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prozessanschluss</td>
<td>316L, PVDF, Alloy C22 (2.4602), Alloy C276 (2.4819), Duplex-Stahl (1.4462), Titan Grade 2</td>
</tr>
<tr>
<td>Membran</td>
<td>Saphir-Keramik® (> 99,9 %ige Al₂O₃-Keramik)</td>
</tr>
<tr>
<td>Fügewerkstoff Membran/Grundkörper</td>
<td>Glas (bei Doppel- und Formdichtung nicht medienberührend)</td>
</tr>
</tbody>
</table>

Messzellenendichtung
- Standard: seitlich, zurückgesetzt (O-Ring)
- Aseptischer Anschluss mit Nutüberwurfmutter: vorn liegend (Formdichtung)

Dichtung Prozessanschluss im Lieferumfang
- Gewinde G½ EN 837 Klingsersil C-4400
- Gewinde G1½ DIN 3852-A Klingsersil C-4400
- Aseptischer Anschluss mit Nutüberwurfmutter KFKM, EPDM, FFKM, FEPM
- M44 x 1,25 (DIN 13), M30 x 1,5 KFKM, FFKM, EPDM

Werkstoffe für Lebensmittelanwendungen

Oberflächengüte hygienische Anschlüsse, typ.
- Prozessanschluss Rₐ < 0,8 µm
- Keramikmembran Rₐ < 0,5 µm

Dichtung unter 316L-Wandmontageplatte EPDM bei 3A-Zulassung

Werkstoffe, nicht medienberührt

Gehäuse
- Kunststoffgehäuse Kunststoff PBT (Polyester)
- Aluminium-Druckgussgehäuse Aluminium-Druckguss AlSi10Mg, pulverbeschichtet - Basis: Polyester
- Edelstahlgehäuse 316L
- Kabelverschraubung PA, Edelstahl, Messing
- Dichtung Kabelverschraubung NBR
- Verschlussstopfen Kabelverschraubung PA
Dichtung zwischen Gehäuse und Gehäusedeckel
- Silikon SI 850 R, NBR silikonfrei

Sichtfenster im Gehäusedeckel
- Polycarbonat, UL746-C gelistet (bei Ex-d-Ausführung: Glas)

Erdungsklemme
- 316L

Externes Gehäuse
- Gehäuse
 - Kunststoff PBT (Polyester), 316L
- Sockel, Wandmontageplatte
 - Kunststoff PBT (Polyester), 316L
- Dichtung zwischen Sockel und Wandmontageplatte
 - EPDM (fest verbunden)

Dichtung zwischen Gehäuse und Gehäusedeckel
- Silikon SI 850 R, NBR silikonfrei, EPDM (lackverträglich)

Sichtfenster im Gehäusedeckel
- Polycarbonat, UL746-C gelistet (bei Ex-d-Ausführung: Glas)

Erdungsklemme
- 316Ti/316L

Verbindungskabel bei IP 68 (25 bar)-Ausführung
- Kabelmantel
 - PE, PUR
- Typschildträger auf Kabel
 - PE-hart
- Anschlusskabel bei IP 68 (1 bar)-Ausführung
 - PE, PUR

Gewichte
Gesamtgewicht CPT-2x ca.
- 0.8 ... 8 kg (1.764 ... 17.64 lbs), je nach Prozessanschluss und Gehäuse

Anzugsmomente
Max. Anzugsmoment für Prozessanschluss
- G½, G¾
 - 30 Nm (22.13 lbf ft)
- Anschlüsse nach 3A mit austauschbaren Dichtung
 - 20 Nm (14.75 lbf ft)
- Aseptischer Anschluss mit Nutüberwurfmutter (Sechskant)
 - 40 Nm (29.50 lbf ft)
- G1, M30 x 1,5
 - 50 Nm (36.88 lbf ft)
- G1 für PASVE
 - 100 Nm (73.76 lbf ft)
- G1½
 - 200 Nm (147.5 lbf ft)

Max. Anzugsmoment für Schrauben
- PMC 1", PMC 1¼"
 - 2 Nm (1.475 lbf ft)
- PMC 1½"
 - 5 Nm (3.688 lbf ft)

Max. Anzugsmoment für NPT-Kabelverschraubungen und Conduit-Rohre
- Kunststoffgehäuse
 - 10 Nm (7.376 lbf ft)
- Aluminium-/Edelstahlgehäuse
 - 50 Nm (36.88 lbf ft)

1) Zwischen Messwertaufnehmer und externem Elektronikgehäuse.
2) Fest verbunden mit dem Sensor.
Eingangsgröße

Die Angaben dienen zur Übersicht und beziehen sich auf die Messzelle. Einschränkungen durch Werkstoff und Bauform des Prozessanschluss sowie die gewählte Druckart sind möglich. Es gelten jeweils die Angaben des Typschildes.

Nennmessbereiche und Überlastbarkeit in bar/kPa

<table>
<thead>
<tr>
<th>Nennmessbereich</th>
<th>Überlastbarkeit maximaler Druck</th>
<th>Überlastbarkeit minimaler Druck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Überdruck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ... +0,25 bar/0 ... +2,5 kPa</td>
<td>+5 bar/+500 kPa</td>
<td>-0,05 bar/-5 kPa</td>
</tr>
<tr>
<td>(nur für Messzelle ø 28 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ... +0,1 bar/0 ... +10 kPa</td>
<td>+15 bar/+1500 kPa</td>
<td>-0,2 bar/-20 kPa</td>
</tr>
<tr>
<td>0 ... +0,4 bar/0 ... +40 kPa</td>
<td>+30 bar/+3000 kPa</td>
<td>-0,8 bar/-80 kPa</td>
</tr>
<tr>
<td>0 ... +1 bar/0 ... +100 kPa</td>
<td>+35 bar/+3500 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>0 ... +2,5 bar/0 ... +250 kPa</td>
<td>+50 bar/+5000 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>0 ... +5 bar/0 ... +500 kPa</td>
<td>+65 bar/+6500 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>0 ... +10 bar/0 ... +1000 kPa</td>
<td>+90 bar/+9000 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>0 ... +25 bar/0 ... +2500 kPa</td>
<td>+125 bar/+12500 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>0 ... +60 bar/0 ... +6000 kPa</td>
<td>+200 bar/+2000 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>0 ... +100 bar/0 ... +10000 kPa</td>
<td>+200 bar/+20000 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>(nur für Messzelle ø 28 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 ... 0 bar/-100 ... 0 kPa</td>
<td>+35 bar/+3500 kpa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>-1 ... +1,5 bar/-100 ... +150 kPa</td>
<td>+40 bar/+4000 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>-1 ... +10 bar/-100 ... +1000 kPa</td>
<td>+90 bar/+9000 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>-1 ... +25 bar/-100 ... +2500 kPa</td>
<td>+125 bar/+12500 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>-1 ... +60 bar/-100 ... +6000 kPa</td>
<td>+180 bar/+18000 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>-1 ... +100 bar/-100 ... +10000 kPa</td>
<td>+200 bar/+20000 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>(nur für Messzelle ø 28 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0,05 ... +0,05 bar/-5 ... +5 kPa</td>
<td>+7,5 bar/+750 kPa</td>
<td>-0,2 bar/-20 kPa</td>
</tr>
<tr>
<td>-0,2 ... +0,2 bar/-20 ... +20 kPa</td>
<td>+20 bar/+2000 kPa</td>
<td>-0,4 bar/-40 kPa</td>
</tr>
<tr>
<td>-0,5 ... +0,5 bar/-50 ... +50 kPa</td>
<td>+35 bar/+3500 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>Absolutdruck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ... 0,1 bar/0 ... 10 kPa</td>
<td>15 bar/1500 kPa</td>
<td>0 bar abs.</td>
</tr>
<tr>
<td>0 ... 1 bar/0 ... 100 kPa</td>
<td>35 bar/3500 kPa</td>
<td>0 bar abs.</td>
</tr>
<tr>
<td>0 ... 2,5 bar/0 ... 250 kPa</td>
<td>50 bar/5000 kPa</td>
<td>0 bar abs.</td>
</tr>
<tr>
<td>0 ... +5 bar/0 ... +500 kPa</td>
<td>65 bar/+6500 kPa</td>
<td>0 bar abs.</td>
</tr>
<tr>
<td>0 ... 10 bar/0 ... 1000 kPa</td>
<td>90 bar/9000 kPa</td>
<td>0 bar abs.</td>
</tr>
<tr>
<td>0 ... 25 bar/0 ... 2500 kPa</td>
<td>+125 bar/+12500 kPa</td>
<td>0 bar abs.</td>
</tr>
<tr>
<td>0 ... 60 bar/0 ... 6000 kPa</td>
<td>+200 bar/+20000 kPa</td>
<td>0 bar abs.</td>
</tr>
<tr>
<td>0 ... +100 bar/0 ... +10000 kPa</td>
<td>200 bar/20000 kPa</td>
<td>0 bar abs.</td>
</tr>
<tr>
<td>(nur für Messzelle ø 28 mm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nennmessbereiche und Überlastbarkeit in psi

<table>
<thead>
<tr>
<th>Nennmessbereich</th>
<th>Überlastbarkeit maximaler Druck</th>
<th>Überlastbarkeit minimaler Druck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Überdruck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ... +0.4 psig</td>
<td>+75 psig</td>
<td>-0.725 psig</td>
</tr>
<tr>
<td>(nur für Messzelle ø 28 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ... +1.5 psig</td>
<td>+225 psig</td>
<td>-2.901 psig</td>
</tr>
<tr>
<td>0 ... +5 psig</td>
<td>+375 psig</td>
<td>-11.60 psig</td>
</tr>
<tr>
<td>0 ... +15 psig</td>
<td>+525 psig</td>
<td>-14.51 psig</td>
</tr>
<tr>
<td>0 ... +30 psig</td>
<td>+600 psig</td>
<td>-14.51 psig</td>
</tr>
<tr>
<td>0 ... +75 psig</td>
<td>+975 psig</td>
<td>-14.51 psig</td>
</tr>
<tr>
<td>0 ... +150 psig</td>
<td>+1350 psig</td>
<td>-14.51 psig</td>
</tr>
<tr>
<td>0 ... +300 psig</td>
<td>+1500 psig</td>
<td>-14.51 psig</td>
</tr>
<tr>
<td>0 ... +900 psig</td>
<td>+2900 psig</td>
<td>-14.51 psig</td>
</tr>
<tr>
<td>0 ... +1450 psig</td>
<td>+2900 psig</td>
<td>-14.51 psig</td>
</tr>
<tr>
<td>(nur für Messzelle ø 28 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-14.5 ... 0 psig</td>
<td>+525 psig</td>
<td>-14.51 psig</td>
</tr>
<tr>
<td>-14.5 ... +20 psig</td>
<td>+600 psig</td>
<td>-14.51 psig</td>
</tr>
<tr>
<td>-14.5 ... +75 psig</td>
<td>+975 psig</td>
<td>-14.51 psig</td>
</tr>
<tr>
<td>-14.5 ... +150 psig</td>
<td>+1350 psig</td>
<td>-14.51 psig</td>
</tr>
<tr>
<td>-14.5 ... +300 psig</td>
<td>+1500 psig</td>
<td>-14.51 psig</td>
</tr>
<tr>
<td>-14.5 ... +900 psig</td>
<td>+2700 psig</td>
<td>-14.51 psig</td>
</tr>
<tr>
<td>-14.5 ... +1500 psig</td>
<td>+2900 psig</td>
<td>-14.51 psig</td>
</tr>
<tr>
<td>(nur für Messzelle ø 28 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.7 ... +0.7 psig</td>
<td>+105 psig</td>
<td>-2.901 psig</td>
</tr>
<tr>
<td>-3 ... +3 psig</td>
<td>+300 psig</td>
<td>-5.800 psig</td>
</tr>
<tr>
<td>-7 ... +7 psig</td>
<td>+490 psig</td>
<td>-14.51 psig</td>
</tr>
<tr>
<td>Absolutdruck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ... 1.5 psi</td>
<td>225 psig</td>
<td>0 psi</td>
</tr>
<tr>
<td>0 ... 5 psi</td>
<td>435 psig</td>
<td>0 psi</td>
</tr>
<tr>
<td>0 ... 15 psi</td>
<td>525 psig</td>
<td>0 psi</td>
</tr>
<tr>
<td>0 ... 30 psi</td>
<td>600 psig</td>
<td>0 psi</td>
</tr>
<tr>
<td>0 ... +75 psi</td>
<td>975 psig</td>
<td>0 psi</td>
</tr>
<tr>
<td>0 ... 150 psi</td>
<td>1350 psig</td>
<td>0 psi</td>
</tr>
<tr>
<td>0 ... 300 psi</td>
<td>1500 psig</td>
<td>0 psi</td>
</tr>
<tr>
<td>0 ... 900 psi</td>
<td>+2900 psig</td>
<td>0 psi</td>
</tr>
<tr>
<td>0 ... +1450 psig</td>
<td>2900 psig</td>
<td>0 psi</td>
</tr>
<tr>
<td>(nur für Messzelle ø 28 mm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Einstellbereiche

Angaben beziehen sich auf den Nennmessbereich, Druckwerte kleiner als -1 bar können nicht eingestellt werden

Min.-/Max.-Abgleich:
- Prozentwert: -10 ... 110 %
- Druckwert: -20 ... 120 %

Zero-/Span-Abgleich:
- Zero: -20 ... +95 %
- Span: -120 ... +120 %
- Differenz zwischen Zero und Span: max. 120 % des Nennmessbereichs

Max. zulässiger Turn Down: Unbegrenzt (empfohlen 20 : 1)

Einschaltphase

Hochlaufzeit bei Betriebsspannung U_B
- ≥ 12 V DC: ≤ 9 s
- < 12 V DC: ≤ 22 s

Anlaufstrom (für Hochlaufzeit): $\leq 3,6$ mA

Ausgangsgröße

Details zur Betriebsspannung siehe Spannungsversorgung

Ausgangssignal: 4 ... 20 mA/HART
Bereich des Ausgangssignals: 3,8 ... 20,5 mA/HART (Werkseinstellung)
Erfüllte HART-Spezifikation: 7,3
Signalauflösung: 0,3 µA
Ausfallsignal Stromausgang (einstellbar): ≥ 21 mA, $\leq 3,6$ mA, letzter gültiger Messwert
Max. Ausgangsstrom: 21,5 mA
Bürde: Siehe Bürdenwiderstand unter Spannungsversorgung
Anlaufstrom: ≤ 10 mA für 5 ms nach Einschalten, $\leq 3,6$ mA
Dämpfung (63 % der Eingangsgröße): 0 ... 999 s

Dynamisches Verhalten Ausgang

Dynamische Kenngrößen, abhängig von Medium und Temperatur

1) Letzter gültiger Messwert bei SIL nicht möglich.
2) Die Ausgangswerte können beliebig zugeordnet werden.
Abb. 39: Verhalten bei sprunghafter Änderung der Prozessgröße. \(t_T \): Totzeit; \(t_A \): Anstiegszeit; \(t_S \): Sprungantwortzeit

1. Prozessgröße
2. Ausgangssignal

<table>
<thead>
<tr>
<th></th>
<th>CPT-2x</th>
<th>CPT-2x - IP 68 (25 bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totzeit</td>
<td>(\leq 25 \text{ ms})</td>
<td>(\leq 50 \text{ ms})</td>
</tr>
<tr>
<td>Anstiegszeit (10 … 90 %)</td>
<td>(\leq 55 \text{ ms})</td>
<td>(\leq 150 \text{ ms})</td>
</tr>
<tr>
<td>Sprungantwortzeit (ti: 0 s, 10 … 90 %)</td>
<td>(\leq 80 \text{ ms})</td>
<td>(\leq 200 \text{ ms})</td>
</tr>
</tbody>
</table>

Dämpfung (63 % der Eingangsgröße) \(0 \ldots 999 \text{ s, über Menüpunkt "Dämpfung" einstellbar} \)

Zusätzliche Ausgangsgröße - Messzellantemperatur

<table>
<thead>
<tr>
<th>Erfassungsbereich</th>
<th>-60 \ldots +150 °C ((-76 \ldots +302 °F))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auflösung</td>
<td>< 0,2 K</td>
</tr>
<tr>
<td>Genauigkeit</td>
<td></td>
</tr>
<tr>
<td>− Im Bereich 0 \ldots +100 °C</td>
<td>±2 K</td>
</tr>
<tr>
<td></td>
<td>(+32 … +212 °F)</td>
</tr>
<tr>
<td>− Im Bereich -60 \ldots 0 °C</td>
<td>typ. ±4 K</td>
</tr>
<tr>
<td></td>
<td>(-76 \ldots +32 °F) und +100 \ldots +150 °C</td>
</tr>
<tr>
<td></td>
<td>(+212 \ldots +302 °F)</td>
</tr>
</tbody>
</table>

Ausgabe der Temperaturwerte

<table>
<thead>
<tr>
<th>Analog</th>
<th>Über den zusätzlichen Stromausgang (4 mA = 0 °C, 20 mA = 100 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital</td>
<td>Je nach Elektronikausführung über das HART-, Profibus PA-, Foundation Fieldbus- oder Modbussignal</td>
</tr>
</tbody>
</table>

Referenzbedingungen und Einflussgrößen (nach DIN EN 60770-1)

Referenzbedingungen nach DIN EN 61298-1

− Temperatur	+15 \ldots +25 °C (+59 \ldots +77 °F)
− Relative Luftfeuchte	45 \ldots 75 %
− Luftdruck	860 \ldots 1060 mbar/86 \ldots 106 kPa (12.5 \ldots 15.4 psig)

Kennlinienbestimmung

Grenzpunkteinstellung nach IEC 61298-2
Kennliniencharakteristik: Linear
Referenzeinbaulage: stehend, Messmembran zeigt nach unten
Einfluss der Einbautlage: < 0,2 mbar/20 Pa (0.003 psig)
Abweichung am Stromausgang durch starke, hochfrequente elektromagnetische Felder im Rahmen der EN 61326-1

Messabweichung (nach IEC 60770)
Gilt für den **digitalen** Signalausgang (HART, Profibus PA, Foundation Fieldbus) sowie den **analogen** 4 ... 20 mA-Stromausgang und bezieht sich auf die eingestellte Messspanne. Turn down (TD) ist das Verhältnis Nennmessbereich/eingestellte Messspanne.

Die angegebenen Werte entsprechen dem Wert F_{ki} in Kapitel "Berechnung der Gesamtabweichung".

<table>
<thead>
<tr>
<th>Genauigkeitsklasse</th>
<th>Nichtlinearität, Hysterese und Nichtwiederholbarkeit bei TD 1 : 1 bis 5 : 1</th>
<th>Nichtlinearität, Hysterese und Nichtwiederholbarkeit bei TD > 5 : 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,05 %</td>
<td>< 0,05 %</td>
<td>< 0,01 % x TD</td>
</tr>
<tr>
<td>0,1 %</td>
<td>< 0,1 %</td>
<td>< 0,02 % x TD</td>
</tr>
<tr>
<td>0,2 %</td>
<td>< 0,2 %</td>
<td>< 0,04 % x TD</td>
</tr>
</tbody>
</table>

Einfluss der Medium- bzw. Umgebungstemperatur

Thermische Änderung Nullsignal und Ausgangsspanne durch Mediumtemperatur

Gilt für den **digitalen** Signalausgang (HART, Profibus PA, Foundation Fieldbus) sowie den **analogen** 4 ... 20 mA-Stromausgang und bezieht sich auf die eingestellte Messspanne. Turn down (TD) ist das Verhältnis Nennmessbereich/eingestellte Messspanne.

Die thermische Änderung Nullsignal und Ausgangsspanne entspricht dem Temperaturfehler F_{T} in Kapitel "Berechnung der Gesamtabweichung (nach DIN 16086)".

Basis-Temperaturfehler F_{TBasis}

![Diagramm der Basis-Temperaturfehler F_{TBasis} bei TD 1 : 1](image)

Abb. 40: Basis-Temperaturfehler F_{TBasis} bei TD 1 : 1

Der Basis-Temperaturfehler in % aus der obigen Grafik kann sich durch Zusatzfaktoren je nach Messzellenausführung (Faktor FMZ) und Turn Down (Faktor FTD) erhöhen. Die Zusatzfaktoren sind in den folgenden Tabellen aufgelistet.
Zusatzfaktor durch Messzelleausführung

<table>
<thead>
<tr>
<th>Messzelleausführung</th>
<th>Messzelle Standard, je nach Genauigkeitsklasse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,05 %, 0,1 %</td>
</tr>
<tr>
<td></td>
<td>0,2 % (bei Messbereich 0,1 bar$_{abs}$)</td>
</tr>
<tr>
<td></td>
<td>0,2 %</td>
</tr>
<tr>
<td></td>
<td>0,05 %, 0,1 % bei Messbereich 25 mbar</td>
</tr>
<tr>
<td>Faktor FMZ</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Zusatzfaktor durch Turn Down

Der Zusatzfaktor FTD durch Turn Down wird nach folgender Formel errechnet:

\[F_{TD} = 0,5 \times TD + 0,5 \]

In der Tabelle sind Beispielwerte für typische Turn Downs aufgelistet.

<table>
<thead>
<tr>
<th>Turn Down</th>
<th>TD 1 : 1</th>
<th>TD 2,5 : 1</th>
<th>TD 5 : 1</th>
<th>TD 10 : 1</th>
<th>TD 20 : 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faktor FTD</td>
<td>1</td>
<td>1,75</td>
<td>3</td>
<td>5,5</td>
<td>10,5</td>
</tr>
</tbody>
</table>

Thermische Änderung Stromausgang durch Umgebungstemperatur

Gilt zusätzlich für den *analogen* 4 … 20 mA-Stromausgang und bezieht sich auf die eingestellte Messspanne.

Thermische Änderung Stromausgang: < 0,05 %/10 K, max. < 0,15 %, jeweils bei -40 … +80 °C (-40 … +176 °F)

Die thermische Änderung des Stromausgangs entspricht dem Wert \(F_n \) in Kapitel "Berechnung der Gesamtabweichung (nach DIN 16086)".

Langzeitstabilität (gemäß DIN 16086)

Gilt für den jeweiligen *digitalen* Signalausgang (z. B. HART, Profibus PA) sowie für den *analoge* 4 … 20 mA-Stromausgang unter Referenzbedingungen. Angaben beziehen sich auf die eingestellte Messspanne. Turn down (TD) ist das Verhältnis Nennmessbereich/eingestellte Messspanne.
Umgebungsbedingungen

<table>
<thead>
<tr>
<th>Ausführung</th>
<th>Umgebungstemperatur</th>
<th>Lager- und Transporttemperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardausführung</td>
<td>-40 ... +80 °C (-40 ... +176 °F)</td>
<td>-60 ... +80 °C (-76 ... +176 °F)</td>
</tr>
<tr>
<td>Ausführung IP 66/IP 68 (1 bar)</td>
<td>-20 ... +80 °C (-4 ... +176 °F)</td>
<td>-20 ... +80 °C (-4 ... +176 °F)</td>
</tr>
<tr>
<td>Ausführung IP 68 (25 bar), Anschlusskabel PUR</td>
<td>-20 ... +80 °C (-4 ... +176 °F)</td>
<td>-20 ... +80 °C (-4 ... +176 °F)</td>
</tr>
<tr>
<td>Ausführung IP 68 (25 bar), Anschlusskabel PE</td>
<td>-20 ... +60 °C (-4 ... +140 °F)</td>
<td>-20 ... +60 °C (-4 ... +140 °F)</td>
</tr>
</tbody>
</table>

Prozessbedingungen

Prozesstemperatur

<table>
<thead>
<tr>
<th>Messzellendichtung</th>
<th>Sensorausführung</th>
<th>Standard</th>
<th>Erweiterter Temperaturbereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>FKM</td>
<td>VP2/A</td>
<td>-20 ... +130 °C (-4 ... +266 °F)</td>
<td>-20 ... +150 °C (-4 ... +302 °F)</td>
</tr>
<tr>
<td></td>
<td>A+P 70.16</td>
<td>-40 ... +130 °C (-40 ... +266 °F)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Endura V91A</td>
<td>-40 ... +130 °C (-40 ... +266 °F)</td>
<td>-40 ... +150 °C (-40 ... +302 °F)</td>
</tr>
<tr>
<td></td>
<td>ET 7067</td>
<td>-20 ... +130 °C (-4 ... +266 °F)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>V70SW</td>
<td>-</td>
<td>-10 ... +150 °C (14 ... +302 °F)</td>
</tr>
<tr>
<td>EPDM</td>
<td>A+P 75.5/KW75F</td>
<td>-40 ... +130 °C (-40 ... +266 °F)</td>
<td>-40 ... +150 °C (-40 ... +302 °F)</td>
</tr>
<tr>
<td></td>
<td>ET 7056</td>
<td>-40 ... +130 °C (-40 ... +266 °F)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>E70Q</td>
<td>-</td>
<td>-40 ... +150 °C (-40 ... +302 °F)</td>
</tr>
<tr>
<td></td>
<td>Fluoraz SD890</td>
<td>-5 ... +130 °C (-22 ... +266 °F)</td>
<td>-</td>
</tr>
<tr>
<td>FFKM</td>
<td>Kalrez 6375</td>
<td>-20 ... +130 °C (-4 ... +266 °F)</td>
<td>-20 ... +150 °C (-4 ... +302 °F)</td>
</tr>
<tr>
<td></td>
<td>Perlast G75S</td>
<td>-15 ... +130 °C (-4 ... +266 °F)</td>
<td>-15 ... +150 °C (5 ... +302 °F)</td>
</tr>
<tr>
<td></td>
<td>Perlast G75B</td>
<td>-15 ... +130 °C (-4 ... +266 °F)</td>
<td>-15 ... +150 °C (5 ... +302 °F)</td>
</tr>
<tr>
<td></td>
<td>Perlast G92E</td>
<td>-15 ... +130 °C (-4 ... +266 °F)</td>
<td>-15 ... +150 °C (5 ... +302 °F)</td>
</tr>
<tr>
<td></td>
<td>Chemraz 535</td>
<td>-30 ... +130 °C (-22 ... +266 °F)</td>
<td>-</td>
</tr>
</tbody>
</table>

Temperaturderating

5) Bei Prozessanschluss PVDF, Prozesstemperatur max. 100 °C (212 °F).
Abb. 42: Temperaturderating CPT-2x, Ausführung bis +130 °C (+266 °F)
1 Prozesstemperatur
2 Umgebungstemperatur

Abb. 43: Temperaturderating CPT-2x, Ausführung bis +150 °C (+302 °F)
1 Prozesstemperatur
2 Umgebungstemperatur

SIP-Prozesstemperatur (SIP = Sterilization in place)
Gilt für dampfggeeignete Gerätekonfiguration, d. h. Werkstoff Messzellendichtung EPDM oder FFKM (Perlast G75S).
Dampfbeaufschlagung bis 2 h +150 °C (+302 °F)

Prozessdruck
Zulässiger Prozessdruck siehe Angabe "process pressure" auf dem Typschild

Mechanische Beanspruchung
Vibrationsfestigkeit 4 g bei 5 … 200 Hz nach EN 60068-2-6 (Vibration bei Resonanz)
Schockfestigkeit 50 g, 2,3 ms nach EN 60068-2-27 (mechanischer Schock)

6) Je nach Geräteausführung.
7) 2 g bei Gehäuseausführung Edelstahl-Zweikammer
Elektromechanische Daten - Ausführung IP 66/IP 67 und IP 66/IP 68 (0,2 bar)

Optionen der Kabeleinführung
- Kabeleinführung M20 x 1,5, ½ NPT
- Kabelverschraubung M20 x 1,5, ½ NPT (Kabel-Ø siehe Tabelle unten)
- Blindstopfen M20 x 1,5; ½ NPT
- Verschlusskappe ½ NPT

<table>
<thead>
<tr>
<th>Werkstoff Kabelverschraubung/Dichtungseinsatz</th>
<th>Kabeldurchmesser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 ... 9 mm</td>
</tr>
<tr>
<td>PA/NBR</td>
<td>●</td>
</tr>
<tr>
<td>Messing, vernickelt/NBR</td>
<td>●</td>
</tr>
<tr>
<td>Edelstahl/NBR</td>
<td>–</td>
</tr>
</tbody>
</table>

Aderquerschnitt (Federkraftklemmen)
- Massiver Draht, Litze 0,2 ... 2,5 mm² (AWG 24 ... 14)
- Litze mit Aderendhülse 0,2 ... 1,5 mm² (AWG 24 ... 16)

Elektromechanische Daten - Ausführung IP 66/IP 68 (1 bar)

Anschlusskabel, mechanische Daten
- Aufbau Adern, Druckausgleichskapillare, Zugentlastung, Schirmgeflecht, Metallfolie, Mantel
- Standardlänge 5 m (16.4 ft)
- Min. Biegeradius 25 mm (0.984 in) bei 25 °C (77 °F)
- Durchmesser ca. 8 mm (0.315 in)
- Farbe - Ausführung PE Schwarz
- Farbe - Ausführung PUR Blau

Anschlusskabel, elektrische Daten
- Aderquerschnitt 0,5 mm² (AWG 20)
- Aderwiderstand R’ 0,037 Ω/m (0.012 Ω/ft)

Elektromechanische Daten - Ausführung IP 68 (25 bar)

Verbindungskabel Messwertaufnehmer - externes Gehäuse, mechanische Daten
- Aufbau Adern, Zugentlastung, Druckausgleichskapillare, Schirmgeflecht, Metallfolie, Mantel
- Standardlänge 5 m (16.40 ft)
- Max. Länge 180 m (590.5 ft)
- Min. Biegeradius bei 25 °C/77 °F 25 mm (0.985 in)
- Durchmesser ca. 8 mm (0.315 in)
- Farbe PE Schwarz
- Farbe PUR Blau

8) IP 66/IP 68 (0,2 bar) nur bei Absolutdruck.
9) Druckausgleichskapillare nicht bei Ex-d-Ausführung.
Verbindungskabel Messwertaufnehmer - externes Gehäuse, elektrische Daten
- Aderquerschnitt 0,5 mm² (AWG 20)
- Aderwiderstand R’ 0,037 Ω/m (0.012 Ω/ft)

Anzeige- und Bedienmodul

<table>
<thead>
<tr>
<th>Anzeigeelement</th>
<th>Display mit Hintergrundbeleuchtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messwertanzeige</td>
<td></td>
</tr>
<tr>
<td>- Anzahl der Ziffern</td>
<td>5</td>
</tr>
<tr>
<td>Bedienelemente</td>
<td></td>
</tr>
<tr>
<td>- 4 Tasten</td>
<td>[OK], [->], [+], [ESC]</td>
</tr>
<tr>
<td>- Schalter</td>
<td>Bluetooth On/Off</td>
</tr>
<tr>
<td>Schutzart</td>
<td>IP 20</td>
</tr>
<tr>
<td>- lose</td>
<td>IP 20</td>
</tr>
<tr>
<td>Eingebaut im Gehäuse ohne Deckel</td>
<td>IP 40</td>
</tr>
</tbody>
</table>

Werkstoffe

| - Gehäuse | ABS |
| - Sichtfenster | Polyesterfolie |

Funktionale Sicherheit

SIL-rückwirkungsfrei

Schnittstelle zur externen Anzeige- und Bedieneinheit

<table>
<thead>
<tr>
<th>Datenübertragung</th>
<th>Digital (I²C-Bus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbindungsleitung</td>
<td>Vieradrig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensorausführung</th>
<th>Aufbau Verbindungsleitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leitungslänge</td>
<td>Standardleitung</td>
</tr>
<tr>
<td>4 … 20 mA/HART Modbus</td>
<td>50 m</td>
</tr>
<tr>
<td>Profibus PA, Foundation Fieldbus</td>
<td>25 m</td>
</tr>
</tbody>
</table>

Integrierte Uhr

<table>
<thead>
<tr>
<th>Datumsformat</th>
<th>Tag.Monat.Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeitformat</td>
<td>12 h/24 h</td>
</tr>
<tr>
<td>Zeitzone werkseitig</td>
<td>CET</td>
</tr>
<tr>
<td>Max. Gangabweichung</td>
<td>10,5 min/Jahr</td>
</tr>
</tbody>
</table>

Zusätzliche Ausgangsgröße - Elektroniktemperatur

<table>
<thead>
<tr>
<th>Ausgabe der Werte</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Anzeige</td>
<td>Über das Anzeige- und Bedienmodul</td>
</tr>
<tr>
<td>- Analog</td>
<td>Über den Stromausgang</td>
</tr>
<tr>
<td>- Digital</td>
<td>Über das digitale Ausgangssignal (je nach Elektronikausführung)</td>
</tr>
<tr>
<td>Bereich</td>
<td>-40 ... +85 °C (-40 ... +185 °F)</td>
</tr>
</tbody>
</table>
Auflösung
< 0,1 K

Genauigkeit
±3 K

Spannungsversorgung

Betriebsspannung U_B
- Nicht-Ex-Gerät: 9,6 ... 35 V DC
- Ex-d-Gerät: 9,6 ... 35 V DC

Betriebsspannung U_B - beleuchtetes Anzeige- und Bedienmodul
- Nicht-Ex-Gerät: 16 ... 35 V DC
- Ex-d-Gerät: 16 ... 35 V DC

Verpolungsschutz
Integriert

Zulässige Restwelligkeit - Nicht-Ex-, Ex-ia-Gerät
- für U_B 12 V DC (9,6 V < U_B < 14 V): \(\leq 0,7 \, V_{eff} \) (16 ... 400 Hz)
- für U_B 24 V DC (18 V < U_B < 35 V): \(\leq 1,0 \, V_{eff} \) (16 ... 400 Hz)

Bürdenwiderstand
- Berechnung: \((U_B - U_{min})/0,022\) A
- Beispiel - Nicht-Ex-Gerät bei \(U_B=24\) V DC: \((24\text{ V} - 9,6\text{ V})/0,022\) A = 655 Ω

Potenzialverbindungen und elektrische Trennmaßnahmen im Gerät

Elektronik: Nicht potenzialgebunden

Bemessungsspannung\(^{10}\): 500 V AC

Elektrische Schutzmaßnahmen\(^{11}\)

<table>
<thead>
<tr>
<th>Gehäusewerkstoff</th>
<th>Ausführung</th>
<th>Schutzart nach IEC 60529</th>
<th>Schutzart nach NEMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kunststoff</td>
<td>Einkammer</td>
<td>IP 66/IP 67</td>
<td>Type 4X</td>
</tr>
<tr>
<td></td>
<td>Zweikammer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminium</td>
<td>Einkammer</td>
<td>IP 66/IP 68 (0,2 bar)</td>
<td>Type 6P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP 68 (1 bar)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Zweikammer</td>
<td>IP 66/IP 68 (0,2 bar)</td>
<td>Type 6P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP 68 (1 bar)</td>
<td>-</td>
</tr>
<tr>
<td>Edelstahl (elektropoliert)</td>
<td>Einkammer</td>
<td>IP 69K</td>
<td>-</td>
</tr>
<tr>
<td>Edelstahl (Feinguss)</td>
<td>Einkammer</td>
<td>IP 66/IP 68 (0,2 bar)</td>
<td>Type 6P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP 68 (1 bar)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Zweikammer</td>
<td>IP 66/IP 68 (0,2 bar)</td>
<td>Type 6P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP 68 (1 bar)</td>
<td>-</td>
</tr>
<tr>
<td>Edelstahl</td>
<td>Messwertaufnehmer bei Ausführung mit externem Gehäuse</td>
<td>IP 68 (25 bar)</td>
<td>-</td>
</tr>
</tbody>
</table>

Anschluss des speisenden Netzteils: Netze der Überspannungskategorie III

\(^{10}\) Galvanische Trennung zwischen Elektronik und metallischen Geräteteilen

\(^{11}\) Schutzart IP 66/IP 68 (0,2 bar) nur in Verbindung mit Absolutdruck.
10.2 Berechnung der Gesamtabweichung

Nach DIN 16086 ist die Gesamtabweichung F_{total} die Summe aus Grundgenauigkeit F_{perf} und Langzeitstabilität F_{stab}:

$$F_{total} = F_{perf} + F_{stab}$$

Die Grundgenauigkeit F_{perf} setzt sich aus der thermischen Änderung von Nullsignal und Ausgangsspanne F_T sowie der Messabweichung F_{kl} zusammen:

$$F_{perf} = \sqrt{(F_T)^2 + (F_{kl})^2}$$

Die thermische Änderung von Nullsignal und Ausgangsspanne F_T wird in Kapitel "Technische Daten" angegeben. Der Basis-Temperaturfehler F_T wird dort grafisch dargestellt. Je nach Messzellenausführung und Turn Down muss dieser Wert noch mit zusätzlichen Faktoren FMZ und FTD multipliziert werden:

$$F_T \times FMZ \times FTD$$

Auch diese Werte sind in Kapitel "Technische Daten" angegeben.

Dies gilt für einen digitalen Signalausgang über HART, Profibus PA oder Foundation Fieldbus.

Bei einem 4 … 20 mA-Ausgang kommt noch die thermische Änderung des Stromausganges F_a dazu:

$$F_{perf} = \sqrt{(F_T)^2 + (F_{kl})^2 + (F_a)^2}$$

Zur besseren Übersicht sind hier die Formelzeichen zusammengefasst:

- F_{total}: Gesamtabweichung
- F_{perf}: Grundgenauigkeit
- F_{stab}: Langzeitstabilität
- F_T: Thermische Änderung von Nullsignal und Ausgangsspanne (Temperaturfehler)
- F_{kl}: Messabweichung
- F_a: Thermische Änderung des Stromausganges
- FMZ: Zusatzfaktor Messzellenausführung
- FTD: Zusatzfaktor Turn Down

10.3 Berechnung der Gesamtabweichung - Praxisbeispiel

Daten

Druckmessung in Rohrleitung 4 bar (400 KPa)

12) Bei Einsatz mit erfüllter Gehäuseschutzart.
Mediumtemperatur 50 °C
CPT-2x mit Messbereich 10 bar, Messabweichung < 0,2 %, Prozessanschluss G1½ (Messzelle ø 28 mm)

1. Berechnung des Turn Down
TD = 10 bar/4 bar, TD = 2,5 : 1

2. Ermittlung Temperaturfehler F_T

\[F_T = F_{TBasis} \times F_{MZ} \times F_{TD} \]
\[F_T = 0,15 \% \times 3 \times 1,75 \]
\[F_T = 0,79 \% \]

3. Ermittlung Messabweichung und Langzeitstabilität

Die erforderlichen Werte für Messabweichung F_{KL} und Langzeitstabilität F_{stab} werden den technischen Daten entnommen:

<table>
<thead>
<tr>
<th>Genauigkeitsklasse</th>
<th>Nichtlinearität, Hysterese und Nichtwiederholbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TD ≤ 5 : 1</td>
</tr>
<tr>
<td>0,05 %</td>
<td>< 0,05 %</td>
</tr>
<tr>
<td>0,1 %</td>
<td>< 0,1 %</td>
</tr>
<tr>
<td>0,2 %</td>
<td>< 0,2 %</td>
</tr>
</tbody>
</table>

Tab. 24: Ermittlung der Messabweichung aus der Tabelle: $F_{KL} = 0,2 \%$
4. Berechnung der Gesamtabweichung - HART-Signal

- **1. Schritt: Grundgenauigkeit** F_{perf}

 $F_{\text{perf}} = \sqrt{\left(F_T\right)^2 + \left(F_{KL}\right)^2}$

 $F_T = 0,79 \%$

 $F_{KL} = 0,2 \%$

 $F_{\text{perf}} = \sqrt{(0,79 \%)^2 + (0,2 \%)^2}$

 $F_{\text{perf}} = 0,81 \%$

- **2. Schritt: Gesamtabweichung** F_{total}

 $F_{\text{total}} = F_{\text{perf}} + F_{\text{stab}}$

 $F_{\text{perf}} = 0,81 \%$ (Ergebnis aus Schritt 1)

 $F_{\text{stab}} = (0,05 \% \times TD)$

 $F_{\text{stab}} = (0,05 \% \times 2,5)$

 $F_{\text{stab}} = 0,125 \%$

 $F_{\text{total}} = 0,81 \% + 0,13 \% = 0,94 \%$

5. Berechnung der Gesamtabweichung - 4 ... 20 mA-Signal

- **1. Schritt: Grundgenauigkeit** F_{perf}

 $F_{\text{perf}} = \sqrt{\left(F_T\right)^2 + \left(F_{KL}\right)^2 + \left(F_a\right)^2}$

 $F_T = 0,79 \%$

 $F_{KL} = 0,2 \%$

 $F_a = 0,15 \%$

 $F_{\text{perf}} = \sqrt{(0,79 \%)^2 + (0,2 \%)^2 + (0,15 \%)^2}$

 $F_{\text{perf}} = 0,83 \%$

- **2. Schritt: Gesamtabweichung** F_{total}

 $F_{\text{total}} = F_{\text{perf}} + F_{\text{stab}}$

 $F_{\text{perf}} = (0,05 \% \times TD)$

 $F_{\text{stab}} = (0,05 \% \times 2,5)$

 $F_{\text{stab}} = 0,13 \%$

 $F_{\text{total}} = 0,83 \% + 0,13 \% = 0,96 \%$

Das Beispiel zeigt, dass der Messfehler in der Praxis deutlich höher sein kann, als die Grundgenauigkeit. Ursachen sind Temperatureinfluss und Turn Down.
10.4 Maße

Kunststoffgehäuse

Abb. 45: Gehäuseausführungen in Schutzart IP 66/IP 67 - mit eingebautem Anzeige- und Bedienmodul vergrößert sich die Gehäusehöhe um 9 mm/0.35 in

1 Kunststoff-Einkammer
2 Kunststoff-Zweikammer

Aluminiumgehäuse

Abb. 46: Gehäuseausführungen in Schutzart IP 66/IP 67 - mit eingebautem Anzeige- und Bedienmodul vergrößert sich die Gehäusehöhe um 9 mm/0.35 in

1 Aluminium-Einkammer
2 Aluminium-Zweikammer
Aluminiumgehäuse in Schutzart IP 66/IP 68 (1 bar)

Abb. 47: Gehäuseausführungen in Schutzart IP 66/IP 68 (1 bar) - mit eingebautem Anzeige- und Bedienmodul vergrößert sich die Gehäusehöhe um 9 mm/0.35 in

1 Aluminium-Einkammer
2 Aluminium-Zweikammer
Edelstahlgehäuse

Abb. 48: Gehäuseausführungen in Schutzart IP 66/IP 67 - mit eingebautem Anzeige- und Bedienmodul vergrößert sich die Gehäusehöhe um 9 mm/0.35 in

1 Edelstahl-Einkammer (elektropoliert)
2 Edelstahl-Einkammer (Feinguss)
3 Edelstahl-Zweikammer (Feinguss)
Edelstahlgehäuse in Schutzart IP 66/IP 68 (1 bar)

Abb. 49: Gehäuseausführungen in Schutzart IP 66/IP 68 (1 bar) - mit eingebautem Anzeige- und Bedienmodul vergrößert sich die Gehäusehöhe um 9 mm/0.35 in
1 Edelstahl-Einkammer (elektropoliert)
2 Edelstahl-Einkammer (Feinguss)
3 Edelstahl-Zweikammer (Feinguss)

Edelstahlgehäuse in Schutzart IP 69K

Abb. 50: Gehäuseausführung in Schutzart IP 69K - mit eingebautem Anzeige- und Bedienmodul vergrößert sich die Gehäusehöhe um 9 mm/0.35 in
1 Edelstahl-Einkammer (elektropoliert)
Externes Gehäuse bei IP 68 (25 bar)-Ausführung

Abb. 51: IP 68-Ausführung mit externem Gehäuse

1 Kabelabgang seitlich
2 Kabelabgang axial
3 Kunststoffgehäuse
4 Edelstahlgehäuse, elektropoliert
CPT-2x, Gewindeanschluss nicht frontbündig

Abb. 52: CPT-2x, Gewindeanschluss nicht frontbündig

1 G½ Manometeranschluss (EN 837)
2 G½ A innen G½ (ISO 228-1)
3 G½ A innen G¼ A PVDF (ISO 228-1)
4 G½ Manometeranschluss (EN 837) volumenreduziert
5 ½ NPT innen ¼ NPT
6 M20 x 1,5 Manometeranschluss (EN 837)

Hinweise:
Bei der Ausführung mit "Second Line of Defense" erhöht sich das Längenmaß um 17 mm (0.67 in).
CPT-2x, Gewindeanschluss frontbündig

Abb. 53: CPT-2x, Gewindeanschluss frontbündig

1 G½ (ISO 228-1)
2 G¾ (DIN 3852-E)
3 G1 A (ISO 228-1)
4 G1½ (DIN 3852-A)
5 G1½ A PVDF (DIN 3852-A-B)
6 1½ NPT (ASME B1.20.1)

Bei der Ausführung mit Temperaturbereich bis 150 °C/302 °F erhöht sich das Längenmaß um 28 mm (1.1 in).

Bei der Ausführung mit "Second Line of Defense" erhöht sich das Längenmaß um 17 mm (0.67 in).
CPT-2x, Hygieneanschluss

Abb. 54: CPT-2x, Hygieneanschluss
1 Clamp 2"
2 Aseptischer Anschluss mit Nutüberwurfmutter F40
3 DRD
4 Tuchenhagen Varivent DN 32
5 Rohrverschraubung DN 40 nach DIN 11851
6 Rohrverschraubung DN 50 nach DIN 11851
7 Rohrverschraubung DN 50 nach DIN 11864-1

Bei der Ausführung mit Temperaturbereich bis 150 °C/302 °F erhöht sich das Längenmaß um 28 mm (1.1 in).

Bei der Ausführung mit "Second Line of Defense" erhöht sich das Längenmaß um 17 mm (0.67 in).
CPT-2x, Flanschanschluss

Abb. 55: CPT-2x, Flanschanschluss

1. Flanschanschluss nach DIN 2501
2. Flanschanschluss nach ASME B16.5

Bei der Ausführung mit Temperaturbereich bis 150 °C/302 °F erhöht sich das Längenmaß um 28 mm (1.1 in).

Bei der Ausführung mit "Second Line of Defense" erhöht sich das Längenmaß um 17 mm (0.67 in).
Abb. 56: CPT-2x, Tubusanschluss

1 M30 x 1,5 DIN 13; absolut frontbündig
2 M30 x 1,5 DIN 13; für Stoffauflauf
3 M44 x 1,25 DIN 13; Druckschraube: Aluminium
4 M44 x 1,25 DIN 13; Druckschraube: 316L
5 G1, ISO 228-1 geeignet für PASVE
6 PMC 1" frontbündig PN 6
7 DN 48 mit Spannflansch

Bei der Ausführung mit Temperaturbereich bis 150 °C/302 °F erhöht sich das Längenmaß um 28 mm (1.1 in).
Bei der Ausführung mit "Second Line of Defense" erhöht sich das Längenmaß um 17 mm (0.67 in).

CPT-2x, Anschluss nach IEC 61518

Abb. 57: CPT-2x, Anschluss nach IEC 61518

1 Ovalflanschadapter
2 Kappenflansch

Bei der Ausführung mit Temperaturbereich bis 150 °C/302 °F erhöht sich das Längenmaß um 28 mm (1.1 in).

Bei der Ausführung mit "Second Line of Defense" erhöht sich das Längenmaß um 17 mm (0.67 in).
10.5 Warenzeichen
Alle verwendeten Marken sowie Handels- und Firmennamen sind Eigentum ihrer rechtsmäßigen Eigentümer/Urheber.
INDEX

A
Abgleich 37, 38
 – Einheit 34
 – Prozessdruck 36, 37
Anzeige einstellen 40
Ausgangssignal überprüfen 54

B
Bedienung 33
 – System 32

D
Dämpfung 38
Datum/Uhrzeit einstellen 41
Defaultwerte 42
Dichtungskonzept 10
Displaybeleuchtung 40
Druckausgleich 17
 – Ex d 16
 – Standard 16

E
Elektrischer Anschluss 21, 22, 23
Ereignisspeicher 50

F
Fehlercodes 52, 53

H
HART 45

L
Lagekorrektur 35
Linearisierung 38

M
Messanordnung 17, 18, 19
Messwertspeicher 50

N
NAMUR NE 107 51

P
Parametrierbeispiel 35
Prozessdruckmessung 18

R
Reset 42

S
Schleppzeiger 41
Sensoreinstellungen kopieren 44
Service-Zugang 44
Simulation 41
Sprache umschalten 39
Störungsbeseitigung 54
Stromausgang 39, 45

W
Wartung 49

WIKA Alexander Wiegand SE & Co. KG
Alexander-Wiegand-Straße 30
63911 Klingenberg
Deutschland
Telefon (+49) 9372/132-0
Fax (+49) 9372 132-406
E-Mail: info@wika.de
www.wika.de