ABSOLUTE PRESSURE SWITCHES

WEATHERPROOF AND INTRINSICALLY SAFE: MODEL APW
Versions APWH, APWL

A pressure attachment
B cable entry
WEIGHT 5.5 kg
(dimensions in mm)

Versions APW10
A pressure attachment
B cable entry
WEIGHT 8.2 kg
(dimensions in mm)
For surface mounting use four screws M6.

FLAMEPROOF: MODEL APA
Versions APAH, APAL

A vacuum attachment
B cable entry
WEIGHT 6.5 kg
(dimensions in mm)

Versions APA10
A vacuum attachment
B cable entry
WEIGHT 10 kg
(dimensions in mm)

NOTE: dimensions and weights are not binding unless released on certified drawings.

CAUTION
- Before installing, using or carrying out maintenance on the instrument it is necessary to read and understand the indications given in the attached Instruction Manual.
- The instrument must only be installed and maintained by qualified personnel.
- INSTALLATION IS TO BE CARRIED OUT ONLY AFTER CHECKING THAT INSTRUMENT CHARACTERISTICS ARE CONSISTENT WITH PROCESS AND PLANT REQUIREMENTS
- The functional features of the instrument and its degree of protection are shown on the identification plate fixed to the case.

SAFETY INSTRUCTIONS FOR USE IN HAZARDOUS ATMOSPHERES.

RECOMMENDATIONS FOR PRESSURE SWITCH SAFE USE.

RELATED DOCUMENT
To authentified document with certificate
N° IECEx PRE 16.0068X
N° IECEx PRE 16.0074X

All data, statements and recommendations supplied with this manual are based on information believed by us to be reliable. As the conditions of effective use are beyond our control, our products are sold under the condition that the user himself evaluates such conditions before following our recommendations for the purpose or use foreseen by him.

The present document is the property of ALEXANDER WIEGAND SE &Co and may not be reproduced in any form, nor used for any pur-pose other than that for which it is supplied.
1 GENERAL NOTES

1.1 FOREWORD

APW and APA models were designed for applications where absolute-zero rather than atmospheric set point value is required (see fig.1).

Fig. 1 - Pressure designation

![Pressure designation diagram]

1.2 RANGE CHOICE

The wrong choice of a models or a version, as well as the incorrect installation, lead to malfunction and reduce instrument life. Failure to abide by the indications given in this manual can cause damage to the instrument, the environment and persons.

1.3 ALLOWED OVERRANGE

Pressure exceeding the working range can be occasionally tolerated provided they remain within the limits stated in the instrument features (vacuum or proof pressure). Continuous pressures exceeding the working range can be applied to the instrument provided they are clearly stated in the instrument features. The current and voltage values stated in the technical specifications and ratings must not be exceeded. Transitory overranges can have a destructive effect on the switch.

1.4 MECHANICAL VIBRATIONS

Can generally lead to the wearing of some parts of the instrument or cause false actuation. It is therefore recommended that the instrument be installed in a place where there are no vibrations. In cases where this is impossible it is a good idea to take measures to lessen the effects (elastic supports, installation with the peg of the microswitch positioned at right angles to the vibration plane, etc.).

1.5 TEMPERATURE

Due to the temperature of both the environment and the process fluid, the temperature of the instrument could exceed the allowed limits (normally from -40° to +60°C). Therefore, in case it does, suitable measures (protection against heat radiation, fluid separators, cooling coils, heated lockers) must be taken. Process fluid or its solid particles must not however go inside instrument chambers.

2 OPERATING PRINCIPLE

The process pressure, acting on the diaphragm sensitive element, that has got absolute vacuum as reference pressure, determines its elastic deformation which is used to activate one or two electric microswitches regulated at set point values. The microswitches are of the rapid release type with automatic rearm. When the pressure moves away from the set values, returning towards the normal values, the switch is rearmed. The differential gap (difference between the set point value and the reset value) can be set or adjustable (letter R in the contact codes).

3 MODEL CODE

See Annex 1

4 IDENTIFICATION PLATE AND MARKINGS

The instrument is fitted with a metal plate bearing all its functional characteristics and in case of flame proof or intrinsic safety execution also the markings prescribed by standard IEC/EN 60079-0. Fig.2 shows the plate mounted on flame proof instruments.

Fig. 2 - Flame proof instruments plate

![Identification plate diagram]

1 Notified body that issued the type certificate and number of said certificate.
2 CE marking and identification number of the notified body responsible for production surveillance.
3 Apparatus classification according to ATEX 2014/34/EU directive.
4 Type of protection and ambient temperature limits of operation.

The following table gives the relationship between hazardous areas, Atex Categories and Equipment Protection Level (EPL) listed on the flameproof instrument nameplate.

<table>
<thead>
<tr>
<th>Hazardous area</th>
<th>Categories according to 2014/34/EU directive</th>
<th>EPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas, vapours, fog Zone 0</td>
<td>1G</td>
<td>Ga</td>
</tr>
<tr>
<td>Gas, vapours, fog Zone 1</td>
<td>2G or 1G</td>
<td>Gb or Ga</td>
</tr>
<tr>
<td>Gas, vapours, fog Zone 2</td>
<td>3G, 2G or 1G</td>
<td>Gc, Gb or Ga</td>
</tr>
<tr>
<td>Dust Zone 20</td>
<td>1D</td>
<td>Da</td>
</tr>
<tr>
<td>Dust Zone 21</td>
<td>2D or 1D</td>
<td>Db or Da</td>
</tr>
<tr>
<td>Dust Zone 22</td>
<td>3D, 2D or 1D</td>
<td>Dc, Db or Da</td>
</tr>
</tbody>
</table>
5 SET POINT REGULATION
Each microswitch is independent and can be regulated by means of a screw (for adjustment to snap when the pressure reaches (increasing or decreasing) the desired value (set point). The instrument is usually supplied with the switches set at the setting range value nearest to zero (factory calibration). The instrument is supplied with a label showing the set point calibration value. With factory calibration the values are not indicated on the ratings as these are temporary and will be modified with the definitive values. Prior to installation the instrument must be calibrated and the definitive calibration values written on the label.

If the instrument has been ordered with a specific calibration, check the calibration values marked on the relevant label, prior to installation.

The position of the adjustment screws is given in figure 3.

Fig. 2 - Electrical connections and adjustment screws

1 - Microswitch 2 set point calibration screw
2 - Microswitch 1 set point calibration screw
3 - Terminal block
4 - Electrical connection identification plate

Microswitch electrical circuit: State of the contacts at zero absolute pressure

Designation of the contacts:
C - common
NA - Normally open
NC - Normally closed

The effect that the direction of rotation of the adjustment screws has is described on the label.

6 SET POINT CALIBRATION
In order to proceed with the calibration and the periodical functional verification of the instrument a suitable calibration circuit (fig.4) and an adequate pressure source is required. The test instrument should have a measurement range approximately equal to or slightly wider than the pressure switch range and should have an accuracy consistent with the precision required to calibrate the set point.

Connection of C and NO terminals
• If the circuit is open at the working pressure, the switch closes the circuit as the pressure increases when the desired value is reached.
• If the circuit is closed at the working pressure, the switch opens the circuit as the pressure decreases when the desired value is reached.

Connection of C and NC terminals
• If the circuit is closed at the working pressure, the switch opens the circuit as the pressure increases when the desired value is reached.
• If the circuit is opened at the working pressure, the switch closes the circuit as the pressure decreases when the desired value is reached.

The pressure switch must be mounted in the normal installation position, i.e. with the pressure connection point downwards.

Avoid forcing the elastic support of the microswitch by hand or with tools. This could affect the instrument functioning.

CAUTION: if the switch is of the kind with adjustable dead band (letter R of contacts code) before proceeding with the following operations it is necessary to proceed with the adjustment of the dead band.

Increase the pressure in the circuit up to the desired set point value for the first microswitch.

6.1 PRELIMINARY OPERATIONS
6.1.1 Weatherproof pressure switches (Models APW)
Remove the blocking device fixed to the side of the instrument case and the adjustment screw access plate(fig. 59. Remove the cover by rotating it in an anticlockwise direction.

Fig. 5 - Weatherproof pressure switch blocking and plumbing device

a - Plumbing wire
b - Plumbing
c - Blocking nut
d - Blocking bracket
e - Adjustment screw access plate

6.1.2 Flameproof pressure switches (Models APA)
CAUTION: do not open the cover of flameproof pressure switches (Models APA) when energized, in explosive atmospheres.

Loosen the locking headless screw situated on the cover using a 1,5 hexagonal key then unscrew the cover (fig.6). Remove the internal blocking device inserted on the closure plugs and slide out the plugs.

Fig. 6 - Flameproof pressure switch blocking device

6.2 CALIBRATION CIRCUIT AND OPERATIONS
Prepare the control circuit as indicated in Fig.4. The warning lamps should be connected to contact 1 or 2 in the NO or NC position according to the required contact action.

Connection of C and NO terminals
• If the circuit is open at the working pressure, the switch closes the circuit as the pressure increases when the desired value is reached.
• If the circuit is closed at the working pressure, the switch opens the circuit as the pressure decreases when the desired value is reached.

Connection of C and NC terminals
• If the circuit is closed at the working pressure, the switch opens the circuit as the pressure increases when the desired value is reached.
• If the circuit is opened at the working pressure, the switch closes the circuit as the pressure decreases when the desired value is reached.

The pressure switch must be mounted in the normal installation position, i.e. with the pressure connection pointing downwards.

Avoid forcing the elastic support of the microswitch by hand or with tools. This could affect the instrument functioning.

CAUTION: if the switch is of the kind with adjustable dead band (letter R of contacts code) before proceeding with the following operations it is necessary to proceed with the adjustment of the dead band.

Increase the pressure in the circuit up to the desired set point value for the first microswitch.
Use a wide bladed screwdriver, as indicated on the adhesive plate, until the relative lamp turns on (or turns off).
- If the instrument is equipped with only one contact the calibration is complete.
- If it is equipped with two contacts continue in the following manner.

Vary the pressure until the desired set point value for the second microswitch is reached (fig. 3).

Act on the adjustment screw of the second contact.

Repeat former operations on the first contact, then operations on the second contact, until the required set point precision is obtained. This is necessary due to the reciprocal influence which the microswitches have on the sensitive element of the instrument.

CAUTION: if the two set point are different they must be different for much of 5% of the adjustable span.

6.3 CHECK OF SET POINT

Generate the normal working pressure and wait the pressure stabilisation. Vary the pressure into the circuit and record the set point value. Write the set point values on the adhesive label.

Note: the repeatability should be checked verifying for three times the set point (Pi) starting always from the same pressure value (Pw). The pressure cycle should be slowly to give the possibility to record the set point with accuracy.

6.4 CALIBRATION CIRCUIT FOR INSTRUMENT WITH ADJUSTABLE RANGE LESS TO 60 mbar

The calibration circuit used for the calibration of these instruments must be:
- of big internal volume (5 liters or bigger) in order to reduce the effect of volumetric variation (and therefore of pressure) caused by the sensing element of the pressure switch during the snap action.
- in a thermally stable place in order to guarantee stability to the pressure inside the circuit used for the calibration.

Have to be considered that in a closed circuit with the internal pressure equal to the atmospheric pressure, the variation of temperature of 1°C causes in the circuit a pressure variation of 3.4 mbar.

The maximum inlet pressure must not exceed the lesser of overpressure allowed by the pressure switch and the test gauge.

The test instrument should have a measurement range approximately equal to or slightly wider than the pressure switch range and should have an accuracy consistent with the accuracy required to calibrate the set point.

For example APW10 range 0..16mbar the accuracy of the test gauge must be ± 0.04 mbar to calibrate the set point with an accuracy of ± 0.16 mbar (1% of the adjustable span).

6.5 ADJUSTMENT OF DEAD BAND (LETTER R ON THE MODEL CODE)

The dead band can be adjusted only on the instrument is equipped with a microswitch, which allows adjusting (Letter R on the model code). Adjustment may be obtained by rotating the wheel placed on the microswitch (Fig. 7).

In order to carry out this operation it is advisable to use a blade screwdriver.

WARNING: rotate the wheel without pushing too much the blade against it.

The instrument is normally delivered adjusted on the **minimum value** of its range (factory calibration).

Calibration of dead band

The calibration of the dead band is obtained using the following procedure:

1. - Raise pressure in the circuit until reaching the set point and record its value (Pi).
2. - Reduce pressure in the circuit until reaching the reset point and record its value (Pr).
3. - The difference Pi - Pr = Va represents the dead band factory adjusted value.
4. - Rotate the adjustment wheel in the sense shown in Fig. 6 placing the red notch in horizontal position
5. - Repeat operations 1 and 2 and measure the new dead band Vb.
6. - By comparing the values Va and Vb approximately determine the color of the wheel notch to be placed on the mark.
7. - Place the notch and measure the obtained dead band.
8. - Proceed by successive approximations until reaching the desired dead band value with enough accuracy.
9. - Then proceed with the set point calibration

Example: The dead band increase corresponding to the rotation from A to B is given by: Vb - Va =I

The desired dead band V will be approximately in the position indicated by the value \(k = I / I \) which expresses:

- By units, the wheel notches (1=one black notch, 2=one red notch, 3=one yellow notch, 4=one blue notch, 5=one green notch, 6=two black notches).
- By decimal digits, the percentage middle position between the located notch (of units) and the following one.

6.6 FINAL OPERATIONS

Disconnect the instrument from the calibration circuit.

6.6.1 Weatherproof pressure switches (Models APW)

Take the cover, ensure that the sealing gasket is correctly fitted into its seat, and insert the cover onto the case, with the blocking gasket positioned in correspondence to the blocking bracket. Turn the cover clockwise closing it tightly. Mount the adjustment screw access plate, then the blocking device as in Fig.4.
6.6.2 Flameproof pressure switches (Models APA).

Insert the closure plugs of the adjustment screw access holes, block them using the internal device and if necessary seal them with plumbing. Screw on the cover and block it using the headless screw with which it is equipped (Fig. 5).

Replace the supplied protection caps on the pressure attachment and cable conduit.

IMPORTANT: the protection caps should only be definitively removed during the connection steps (see §6).

7 MOUNTING AND CONNECTIONS

7.1 MOUNTING

Surface mount the instrument by means of the holes provided, or pipe mount using the appropriate bracket (see Fig. 14,15 and 16). In case of surface or panel or rack mounting the instruments can be mounted side by side (see Fig.17).

The chosen position must be such that vibrations, the possibility of shocks or temperature changes are within tolerable limits. With gas or vapour process fluid, the instrument must be positioned higher than the pipe inlet (see Fig. 19). With a liquid process fluid, the instrument can be positioned higher or lower, indifferently (see Fig. 18 and 19).

7.2 PRESSURE CONNECTIONS

For a correct installation it is necessary to:

Mount a shut-off valve with drain (root valve) on the process tube to allow the instrument to be excluded and the connection tubing to be drained. It is recommended that said valve has a capstan-blocking device aimed at preventing it being activated casually and without authorisation.

Mount a service valve near the instrument to permit possible functional verification on site. It is recommended that the service valve is closed with a plug to prevent the outlet of the process fluid caused by the incorrect use of said valve.

Mount a three-piece joint onto the threaded attachment of the instrument to permit the easy mounting or removal of the instrument itself.

Carry out the connection using a flexible tube in such a way that variations in the temperature of the tube itself do not force the instrument attachment.

Ensure that all the pressure connections are airtight. It is important that there are no leakage in the circuit.

Close the root valve and the relative drain device. Close the service valve using a safety plug.

7.3 ELECTRICAL CONNECTIONS

It is recommended to carry out the electrical connections according to the applicable standards. In case of flameproof instrument see also the Standard IEC-60079-14. If the electrical connection is carried out in a protected tube, it shall be made so that condensate is prevented from entering instrument enclosure.

To guarantee the ingress protection IP66 and prevent loosening of the blocking joint or cable glands, it is prescribed to seal the threads with an anaerobic sealant.

For example, use a sealant like Loctite® 542.

CAUTION: fittings used for the electrical connection of the flame proof instruments shall be certified according the IEC or EN standards and shall guarantee instrument degree of protection (IP66).

In the case of Gk threads, this is made in accordance with standard UNI-EN 60079-1 (Italian national variant).

The installation of the cable gland or three-piece joint should be as per fig 8.

Fig. 8 – Installation of electrical connection

With the instrument into the final position provided that the electric line is not energize, remove the cover and make the electrical connection to the terminal block (see Fig. 2).

If the ambient temperature exceeds 60 °C is recommended to use cables suitable for operating temperatures of at least 105 °C.

Flexible cables with a maximum section of 1,5 mm² (16AWG) are recommended using the pre-insulated crimp ring terminal.

Do not touch the adjustment screws and do not bend the elastic microswitch supports in order to prevent the instrument calibration being altered. Ensure that no deposits or wire ends remain inside the case.

Warning: The instrument may be equipped with one or two micro switches SPDT type. All the electrical connection must be part of intrinsically safe circuits. The relevant parameters for intrinsic safety are listed on the nameplate of the instrument.

The tightening of the cable gland or the three-piece joint must be performed as shown in Fig.9.

Fig. 9 – Installation of the cable gland

As soon as connection steps are completed, mount the cover on and make sure it is tight and blocked (See fig 5 and 6).

7.4 CONNETTOR 7 POLES TYPE MIL-5015 FOR WEATHER PROOF INSTRUMENT

The free connector, supplied with the instrument, is able to accept multicore cables with maximum outer diameter 11 mm. It is recommended flexible cables with single-conductor with a maximum section of 1,5 mm² (16AWG).

The cable have to be prepared as per fig. 10

Fig. 10 – Cable preparation

The single stripped conductor has to be crimped with each contact pin. For the electrical connections and for the assembly follow Fig.11.
10 PUTTING INTO OPERATION
The instrument comes into operation as soon as the root valve is opened. Any possible drainage of the connection tubing can be carried out by removing the safety plug and opening the service valve with the necessary caution.

11 VISUAL INSPECTION
Periodically check the external condition of the enclosure. There should be no trace of leakage of process fluid outside the instrument.

In case of flame proof or intrinsic safety instruments, inspections of the electrical installation are to be carried out also according to customer procedures and at least in accordance with Standard EN-60079-17.

The flame proof and the intrinsic safety instruments installed in explosive atmospheres for the combustible dust presence, must be periodically cleaned up externally in order to avoid dust accumulating.

12 FUNCTIONAL VERIFICATION
This will be carried out according to the Customer’s control procedures and because of their particular operating principle, have to be functional inspected every year as minimum if used as an alarm of max pressure

Models AP instruments can be verified on the plant if installed as illustrated in Fig. 18 or 19. To avoid any risk it is recommended check the set point on site without open the cover, without dismount the cable gland and without unplugging the power cable.

The flame proof instruments or intrinsic safety instruments may be checked on site only if apparatus suitable for explosive atmospheres.

If this is not the case it is necessary remove the instrument from the plant, and carry out the verification in a testing room.

If the verification of the set point is performed unplugging the power cable from the terminal block it is recommended de-energize the instrument to avoid any electrical hazard.

WARNING: Instrument models APA, flameproof.
Before open the cover or the cable gland check the absence of explosive atmosphere and check that the instrument is not energize

Verification consists in checking the calibration value and possibly regulating the adjustment screw (see §5).

13 STOPPING AND DISMOUNTING
Before proceeding with these operations ensure that the plant or machines have been put into the conditions foreseen to allow these operations.

With reference to figures 18 and 19
Remove the power supply (signal) from the electrical line. Close the root valve (6) and open the drain. Remove the plug (2), open the valve (3) and wait until the process fluid has drained from the tubing through the drain.

Do not dispose of the process fluid into the environment, if this can cause pollution or damage to people.

Unscrew the three-piece joint (8).

WARNING: Instrument models APA, flameproof.
Before open the cover or the cable gland check the absence of explosive atmosphere and check that the instrument is not energized.

Unscrew the three-piece joint (10) (electrical cable tubing).

Remove the instrument cover and disconnect the electrical cables from the terminal block and earth screws.

Remove the screws fixing the case to the panel (or pipe) and remove the instrument, taking care to slide the electrical conductors out from the case.

The wiring diagram is according Fig. 12.

Fig. 12 – Wiring diagram MIL C-5015

<table>
<thead>
<tr>
<th>CONTACT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1-NA</td>
</tr>
<tr>
<td>B</td>
<td>1-NC</td>
</tr>
<tr>
<td>C</td>
<td>1-C</td>
</tr>
<tr>
<td>D</td>
<td>2-NA</td>
</tr>
<tr>
<td>E</td>
<td>2-NC</td>
</tr>
<tr>
<td>F</td>
<td>2-C</td>
</tr>
<tr>
<td>G</td>
<td>Ground</td>
</tr>
</tbody>
</table>

The installation has to be designed to allow a proof test to detect dangerous undetected fault using, as example, the following procedure:
- Take appropriate action to avoid a false trip
- Force the switch to reach a define max or min threshold value and verify that output goes into the safe state.
- Force the switch to reach a define normal threshold value and verify that output goes into the normal state.
- Repeat the check two times evaluating average set point value and repeatability.
- Restore the loop to full operation
- Restore normal operation

8 INSTRUMENT PLUMBING
Weatherproof pressure switches (Models APW)
The plumbing, aimed as a guarantee against possible tampering of the calibration and electrical connections, can be carried out using a flexible steel wire (a) inserted into the holes in the screw (c) and the bracket (d) provided for this purpose (see Fig. 5).

Flameproof pressure switches (Models APA)
Plumbing is not necessary as the cover is blocked with a headless screw, the closure plugs of the adjustment screw access holes are blocked by means of the internal blocking device and the instrument does not have to be opened when installed (see Fig. 6).

9 SAFETY INTEGRITY LEVEL (SIL) INSTALLATION REQUIREMENTS
The pressure switch has been evaluated as Type A safety related hardware. It has an hardware fault tolerance of 0 if it is used in one out one configuration (1oo1). The installation has to be designed to allow a proof test to detect dangerous undetected fault using, as example, the following procedure:
- Take appropriate action to avoid a false trip
- Force the switch to reach a define max or min threshold value and verify that output goes into the safe state.
- Force the switch to reach a define normal threshold value and verify that output goes into the normal state.
- Repeat the check two times evaluating average set point value and repeatability.
- Restore the loop to full operation
- Restore normal operation

7.5 GROUNDING CONNECTIONS
The instrument is supplied with two grounding connections, one external and one internal. The connections are suitable for a earthing wires of 4 mm² section (fig. 2).

The instrument comes into operation as soon as the root valve is opened. Any possible drainage of the connection tubing can be carried out by removing the safety plug and opening the service valve with the necessary caution.

The wiring diagram is according Fig. 12.

The pressure switch has been evaluated as Type A safety related hardware. It has an hardware fault tolerance of 0 if it is used in one out one configuration (1oo1). The installation has to be designed to allow a proof test to detect dangerous undetected fault using, as example, the following procedure:
- Take appropriate action to avoid a false trip
- Force the switch to reach a define max or min threshold value and verify that output goes into the safe state.
- Force the switch to reach a define normal threshold value and verify that output goes into the normal state.
- Repeat the check two times evaluating average set point value and repeatability.
- Restore the loop to full operation
- Restore normal operation

11 VISUAL INSPECTION
Periodically check the external condition of the enclosure. There should be no trace of leakage of process fluid outside the instrument.

In case of flame proof or intrinsic safety instruments, inspections of the electrical installation are to be carried out also according to customer procedures and at least in accordance with Standard EN-60079-17.

The flame proof and the intrinsic safety instruments installed in explosive atmospheres for the combustible dust presence, must be periodically cleaned up externally in order to avoid dust accumulating.

12 FUNCTIONAL VERIFICATION
This will be carried out according to the Customer’s control procedures and because of their particular operating principle, have to be functional inspected every year as minimum if used as an alarm of max pressure

Models AP instruments can be verified on the plant if installed as illustrated in Fig. 18 or 19. To avoid any risk it is recommended check the set point on site without open the cover, without dismount the cable gland and without unplugging the power cable.

The flame proof instruments or intrinsic safety instruments may be checked on site only if apparatus suitable for explosive atmospheres.

If this is not the case it is necessary remove the instrument from the plant, and carry out the verification in a testing room.

If the verification of the set point is performed unplugging the power cable from the terminal block it is recommended de-energize the instrument to avoid any electrical hazard.

WARNING: Instrument models APA, flameproof.
Before open the cover or the cable gland check the absence of explosive atmosphere and check that the instrument is not energize

Verification consists in checking the calibration value and possibly regulating the adjustment screw (see §5).

13 STOPPING AND DISMOUNTING
Before proceeding with these operations ensure that the plant or machines have been put into the conditions foreseen to allow these operations.

With reference to figures 18 and 19
Remove the power supply (signal) from the electrical line. Close the root valve (6) and open the drain. Remove the plug (2), open the valve (3) and wait until the process fluid has drained from the tubing through the drain.

Do not dispose of the process fluid into the environment, if this can cause pollution or damage to people.

Unscrew the three-piece joint (8).

WARNING: Instrument models APA, flameproof.
Before open the cover or the cable gland check the absence of explosive atmosphere and check that the instrument is not energized.

Unscrew the three-piece joint (10) (electrical cable tubing).

Remove the instrument cover and disconnect the electrical cables from the terminal block and earth screws.

Remove the screws fixing the case to the panel (or pipe) and remove the instrument, taking care to slide the electrical conductors out from the case.
Mount the instrument cover. Insulate and protect the conductors remaining on the plant. Temporarily plug the tubing (4).

In case of flameproof instruments or intrinsically safety it is recommended to follow - at least – the standard IEC-60079-17 for the withdrawal from service of electrical apparatus.

14 DISPOSAL
The instruments are mainly made of stainless steel and aluminium and therefore, once the electrical parts have been dismounted and the parts coming into contact with fluids which could be harmful to people or the environment have been properly dealt with, they can be scrapped.

15 TROUBLESHOOTING

IMPORTANT NOTE: operations involving replacement of essential components must be carried out at our workshop, especially for instruments with flameproof certificate; this is to guarantee the user the total and correct restoration of the product original characteristics.

<table>
<thead>
<tr>
<th>MALFUNCTION</th>
<th>PROBABLE CAUSE</th>
<th>REMEDY</th>
</tr>
</thead>
</table>
| Set point shift | ■ Permanent deformation of the sensitive element due to fatigue or non-tolerated overranges.
 | ■ Variation of the elastic features of the sensitive element due to its chemical corrosion. | ■ Recalibrate or replace instrument with another suitable for application.
 | | ■ Recalibrate or replace the instrument with another having sensitive element made of a suitable material. |
| Slow response | ■ Clogged or obstructed connection line.
 | ■ Root or service valves partially closed. | ■ Check and clean line.
 | | ■ Open valves. |
| No actuation or undue actuation | ■ Root or service valves closed.
 | ■ By-pass valve opened.
 | ■ Microswitch contacts damaged.
 | ■ Loosened electrical joints.
 | ■ Interrupted or short-circuited electrical line. | ■ Open the valves.
 | | ■ Close the valve. | |
| | | ■ Replace the Microswitch. |
| | | ■ Check all electrical joints. |
| | | ■ Check the conditions of the electrical line. |
| Undue actuation | ■ Accidental shocks or excessive mechanical vibrations. | ■ Modify the mounting. |

Fig.14 – APW/APA – Mounting of the brackets for 2" pipe
Fig.15 – APW10/APA10- Mounting of the brackets for 2" pipe

Fig. 16 – Example of mounting
Fig. 17 – Rack mounting
Annex 1 – Model code

1. **MODEL CODE**

1.1 **Ignition protection mode**

- W - Weather proof
- A - Ex d

1.2 **Sensor code**

- L - Low absolute pressure
- M - Medium absolute pressure
- H - High absolute pressure

1.5 **Electric Contacts**

- U - One
- D - Two

1.6 **Type of Electric Contact**

- N - Silver adjustable dead band
- S - Silver + Argon sealed
- G - Gold
- O - Gold + Argon sealed

1.7 **Options**

Example: Intrinsic Safety execution

For further information see datasheet

Fig. 18 - Example of connections -

1 - Fitting
2 - Drain plug
3 - Service valve
4 - Piping

5 - Three piece fitting
6 - Root valve with drain
7 - Process piping
8 - Three piece fitting

9 - "T" fitting
10 - Three piece fitting
11 - Curve
12 - Blocking joint

13 - M6 screws (No. 4)
14 - Bracket for 2" pipe
15 - Vertical pipe
16 - Horizontal pipe

Fig. 19 - Example of connections -

1 - Return line
2 - Root valve with drain
3 - Process piping
4 - Three piece fitting
5 - Curve
6 - Blocking joint
7 - M6 screws (No. 4)
8 - Bracket for 2" pipe
9 - Vertical pipe
10 - Horizontal pipe